The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

Remote surgeries, brain procedures demonstrate Corindus CorPath GRX advances

By Eugene Demaitre | November 22, 2019

Listen to this article
Voiced by Amazon Polly
Corindus arm

CorPath arm with extended-reach cassette. The system has been used in brain and remote surgeries. Source: Corindus

Earlier this month, a team led by Dr. Vitor Mendes Pereira at Toronto Western Hospital and Krembil Brain Institute in Canada completed the first in-human, robot-assisted stroke intervention using Corindus Inc.’s CorPath GRX system. The stent-assisted aneurysm coiling case “marked a significant milestone in interventional medicine as the first step in building towards a new treatment paradigm for patients suffering from neurovascular disease,” said the company, which is also testing remote surgeries.

“The field of neurovascular intervention is changing rapidly, but there remains a significant need to expand access to care and reduce treatment times,” stated Mark Toland, CEO of Corindus. “Implementing robotic capability for neurovascular intervention is the first step toward our vision of providing patients access to the world’s best specialists, regardless of their geographic location.”

Dr. Pereira rehearsed the procedure on a Biomex 3D-printed flow model of the specific anatomy of the patient, a 64-year-old Canadian woman. “Precision is a key element of neurovascular interventions, and it is evident to me that augmenting these delicate procedures with robotic assistance can positively impact how we treat patients,” he said.

Last month, Siemens Healthineers AG completed its acquisition of Corindus Vascular Robotics for $1.1 billion. Physicians recently used CorPath GRX, which has been submitted to the U.S. Food and Drug Administration for approval for additional procedures, in tests of remote surgeries in India.

Also last month, Dr. Ryan Madder completed 36 percutaneous coronary interventions across the U.S. over 5G networks between Waltham, Mass., and New York and San Francisco. “Our study suggests it may eventually be possible for interventional cardiologists to use robotic technology to safely and effectively perform coronary procedures from any one point to another, anywhere in the country,” he said.

Doug Teany, chief operating officer at Corindus, responded to the following questions from The Robot Report about developing CorPath GRX surgical robots and the successful procedures.

Prepping CorPath GRX for brain surgery

CorPath enables brain, remote surgeries

Dr. Pereira and CorPath cockpit. Source: Corindus

Was CorPath designed with the precision of brain surgery in mind, or did it require design changes?

Teany: The CorPath System is designed for precision vascular interventions. The system was originally designed and indicated for coronary peripheral interventions. To enable neurovascular interventions, we upgraded the system to accommodate small-profile devices that are used in neuro-endovascular procedures. This upgraded system is not cleared in the U.S.

We looked at stroke data from 2017 and 2018, and there were 150,000 cases addressable by interventional techniques, where the occlusion and blood vessels were large enough. However, only 5% to 7% of patients get to the right hospital in time. Remote surgeries with robotics could change that percentage to 80% to 90%.

We have an iterative product-development framework, and we’re working on appropriate capabilities for commercializing the core product. We’ve made a lot of technical progress studying force sensing, 3D reconstruction capabilities, and robotics actuation. We’re also working on hazard analysis because we understand that the clinical workflow will change.

How does telesurgery affect the doctor and patients’ experience of preparing for remote surgeries?

Teany: Telesurgery or tele-intervention enables physicians to project their specialized skillsets through remote robotics. When a remote procedure is performed, the physician is the only remote person.

The remainder of the team supporting the procedure — such as nurses, technicians, anesthesiologists — are in the room with the patient. This team completes its duties as usual, while [also] preparing the robotic system and associated devices for the remote physician to operate. The physician orchestrates team collaboration and procedure flow through an audio and visual telepresence system and performs the procedure robotically from their location.

remote surgeries team

Dr. Pereira (second from right) and the team that worked on the successful procedure with CorPath GRX. Source: Corindus

From a patient perspective, there is no specific experience change for the procedure. However, patients could access care more readily with robotic systems if there is not a specialized physician at their local hospitals.

How would remote surgeries increase productivity?

Teany: A tele-intervention network could enable a more efficient system of care by connecting highly skilled specialists with patients who may be geographically limited from receiving timely care — or any care at all. This would allow highly trained physicians to improve their capabilities to treat more patients, ultimately delivering care more efficiently.

Proving the potential of remote surgeries

What were the challenges posed by the transcontinental distance or the number of remote surgeries in the 5G trials?

Teany: Previous remote studies have been performed on simulators up to 100 miles away and on patients 20 miles away. These previous experiences were very positive, with low network latencies that enable technical and procedural success.

It is important to note, with all other parameters equal, network latencies are directly impacted by signal distance travelled. During the multi-city, transcontinental study, we first doubled our remote distance from our previous maximum distance of 100 miles — performing procedures in New York 200 miles away — and then we increased the distance 30 times from our previous maximum distance, performing procedures in San Francisco 3,000 miles away.

The type of network and latency performance we would experience was unknown. We also did not know if over such distances, we would need dedicated network lines to ensure acceptable latency performance. The exciting learnings from the study showed that all connection types, up to 3,000 miles away, yielded excellent latency figures and enabled 100% success for all procedures with imperceptible latency to the operator. Most exciting about this outcome is that 3,000-mile procedures are feasible with current public Internet infrastructure.

What technologies for remote surgeries still need work?

Teany: From a feasibility standpoint, we have made significant progress to demonstrate our remote technology over short and long distances. We still have additional work to take our remote technology through the product-development process, including refining our remote product requirements and defining how to operationalize the product.


The Robot Report is launching the Healthcare Robotics Engineering Forum, which will be on Dec. 9-10, 2019, in Santa Clara, Calif. The conference and expo will focus on improving the design, development, and manufacture of next-generation healthcare robots. Learn more about the Healthcare Robotics Engineering Forum, and register now.


5G and remote surgeries

How did Corindus‘ 5G-enabled simulated procedures compare with those conducted over fiber or the commercial Internet?

Teany: All simulated treatments, across all connection types, were completed successfully and had low latencies that were imperceptible to the operator. The direct-fiber connection provided a dedicated connection without additional network traffic.

The 5G and public Internet connections included other network traffic. However, despite this additional traffic, there were not perceivable latency differences to the operator.

Surgeons in China have performed telesurgery over 5G on human subjects — when can we expect that in the U.S.?

Teany: We believe tele-robotics has the potential to provide patients suffering from emergent events, such as heart attack and stroke, timely and specialized care, no matter their geographic location within the U.S.

Although we have proven the feasibility of remote intervention, there is still quite a bit of heavy lifting to do in order to develop, build out, and operationalize remote robotics, and exact timing in the U.S. cannot be guaranteed.

About The Author

Eugene Demaitre

Eugene Demaitre was senior editor of The Robot Report from 2019-2020. Prior to working at WTWH Media, he was an editor at BNA (now part of Bloomberg), Computerworld, TechTarget, and Robotics Business Review. Demaitre has participated in robotics webcasts and conferences worldwide. He has a master's from the George Washington University and lives in the Boston area.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Intuitive collaborating with Creo Medical to enhance surgical robots
Xact Robotics ACE system
FDA clearance expands indications for Xact Robotics’ ablation system
Intuitive’s profits fall short in first quarter
zeta surgical
Zeta Surgical raises $5.2M in seed funding

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

State of robotic perception with RGo Robotics' Amir Bousani
See More >

Sponsored Content

  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers
  • Roller screws unlock peak performance in robotic applications
  • Making the ROS development cycle manageable

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail