The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

Vision-enabled package handling

By Frank Tobe | September 27, 2014

Capturing and processing camera and sensor data and recognizing various shapes to determine a set of robotic actions is conceptually easy. Humans do it naturally. But it is difficult for a machine.

Vision-guided motion is a growing field within robotics with a number of vendors, integrators and alternative methods such as vision guided robots (VGR), advanced vision guided robots (AVGR) and machine learning guided robots (MLGR).

According to Hob Wubbena, VP at Universal Robotics,

  • VGR refers to 2 and 2.5D vision for pick, place, servo control, object identification, and tracking of known objects in structured locations
  • AVGR refers to 2D and 3D vision for pick, place, servo control, identification, and tracking of a few pre-known objects in semi-structured or random locations
  • And MLGR stands for machine learning guided robot and means 2D & 3D vision for pick, place, servo control, identification, and tracking of many unknown objects in random locations. 

To use 3D vision to determine the differences between shapes and be able to manipulate items from a stack of different objects, all while avoiding collision with other things within its work environment is the holy grail of bin picking and automated mixed-case and carton handling robotics. 

In Hob Wubbena's throughput chart shown above, Hob plots out the various alternatives and compares them to a human picker. A human can recognize and pick an unlimited number of different-sized and shaped cartons or cases but can only physically handle up to 500 per hour. A VGR 4-axis robot can do the same job at speeds up to 1,400 per hour but with a very limited (10 or less) number of different sizes and shapes. An AVGR 4-axis robot can do the same but with a wider range of package sizes and shapes – up to 100. Both VGR and AVGR are limited because their vision recognition processing and memory systems cannot ascertain random objects at high speed throughput rates. A MLGR 4-axis robot can handle unlimited numbers of random cartons or cases and can do so at throughput speeds up to 1,400 per hour because of the speedy machine learning capabilities of the software.

Note that when conditions are favorable, all 3 vision-enabled robot picking alternatives can pick two cases at the same time thereby increasing throughput over the robots physical speed limitation.

Wubbena's company, Universal Robotics (not to be confused with Danish Universal Robots), has developed a hardware-independent software system called Neocortex which uses camera and sensor information and basic parameters of box dimensions to learn and react with robot control instructions in real time.

Neocortex uses supervised learning models with associated learning algorithms that analyzes the data and recognize patterns for each unique carton.  Neocortex sees the attributes, assembles a reasonable real-time model, builds out the nuances of its parameters, and drives behavior in the machine. Its learning model continues to get smarter as it encounters more cartons over time.

Universal's Neocortex system is an example of the evolutionary progression of robots learning how to make more decisions for themselves. This new generation of smarter robots are leaving research labs and making their way into factories and shops with robust vision-enabled technologies for logistics, distribution, materials handling and intricate manufacturing.

About The Author

Frank Tobe

Frank Tobe is the founder of The Robot Report and co-founder of ROBO Global which has developed a tracking index for the robotics industry, the ROBO Global™ Robotics & Automation Index. The index of ~90 companies in 13 sub-sectors tracks and captures the entire economic value of this global opportunity in robotics, automation and enabling technologies.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

jaiabot
Jaia Robotics brings in over $1M in seed funding
waymo
UN allows autonomous vehicles to drive up to 130 km/h
Brian Gerkey with ROS Humble Hawksbill logo behind him
Brian Gerkey on the success of Open Robotics and ROS
june top 10 image
Top 10 robotic stories of June 2022

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Brian Gerkey from Open Robotics discusses the development of ROS
See More >

Sponsored Content

  • Magnetic encoders support the stabilization control of a self-balancing two-wheeled robotic vehicle
  • How to best choose your AGV’s Wheel Drive provider
  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail