The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

These tiny soft robots can be controlled with weak magnets

By Brianna Wessling | July 11, 2023

MIT scientists have created tiny, soft-bodied robots that can be controlled with a weak magnet. The robots are formed from rubbery magnetic spirals and can be programmed to walk, crawl, and swim in response to an easy-to-apply magnetic field. 

The MIT team published their findings in an open-access paper in June in the journal Advanced Materials. Polina Anikeeva, a professor of materials science and engineering and brain and cognitive sciences at MIT and the associate director of MIT’s Research Laboratory of Electronics, led the research. 

According to Anikeeva, this is the first time someone has been able to control three-dimensional locomotion with a one-dimensional magnetic field. And because the robots are composed of a soft polymer, the team didn’t have to use a large magnetic field to control them. 

Magnetic robots typically move in response to moving magnetic fields, according to Anikeeva. This means that if you want a robot to walk, the magnet needs to walk with it. This limits the settings where the robots can be deployed, as it may not be safe to move a magnet in constrained environments. The team sought to make a robot that moves when a stationary instrument applies a magnetic field to the whole sample.

Developing the robots 

The robots used by the team were developed by Youngbin Lee, a former graduate student in Anikeeva’s lab. They work by not being uniformly magnetized. Instead, the robots are strategically magnetized in different zones and directions. This allows a single magnetic field to enable movement. 

Lee’s development of the robots started with two kinds of rubber of different stiffness. Lee sandwiched these together, heated them, and then stretched them into a long, thin fiber. Because of the different properties of the fibers, one of the rubber pieces retains its elasticity through the process, while the other deforms and cannot return to its original size. 

When the strain is released, one layer of the fiber contracts, pulling the other side, and the entire structure, into a gith coil, similar to the tendrils of a cucumber plant that spiral when one layer of cells loses water and contracts faster than another layer. 

The team then incorporated a material whose particles have the potential to become magnetic into a channel that runs through the rubbery fiber. After this, they can apply a magnetization pattern that enables a particular type of movement. 

“Youngbin thought very carefully about how to magnetize our robots to make them able to move just as he programmed them to move,” Anikeeva said. “He made calculations to determine how to establish such a profile of forces on it when we apply a magnetic field that it will actually start walking or crawling.”

For example, to create a caterpillar-like crawling robot, the helical fiber had to be shaped into gentle undulations. The body, head, and tail are then magnetized so that a magnetic field applied perpendicular to the robot’s plane for motion will cause the body to compress.

When this magnetic field is reduced to zero, the compression releases and the robot stretches. Putting these movements together results in the robot propelling forward. 

The team found that this kind of movement worked well for releasing payloads, and because the robots are made from a soft polymer, they could be used in biomedical applications in the future. While the teams’ robots are millimeters long, the same approach could be used to make much smaller robots better suited for medical scenarios. 

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Comments

  1. Pamela Still says

    September 9, 2024 at 8:29 pm

    How do you get these out of your body
    How can you get these out if your body

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

The humanoid robot market is about to experience a boom, with projections indicating a substantial and sustained increase over the next decade, says Freudenberg.
Humanoid robots can benefit from high-performance seals, says Freudenberg
Two Standard Bot robot arms in a white room.
Standard Bots launches 30kg robot arm and U.S. production facility
Headshot of Giovanni Campanella and podcast logo.
Safety and efficiency in robotics design
An image of ABB's Flexly P604 Visual Slam AMR.
ABB upgrades Flexley Mover AMR with visual SLAM capabilities

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe