The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

Study: artificial ‘skin’ could improve robot sensing

By Alex Beall | September 13, 2017

Researchers have found a material that can mimic human skin and improve robots’ sensing capabilities.

Usually rigid semiconductor materials that create robots’ circuits limit the machines’ movement or sensing, either because they are not flexible or don’t permit electrons to flow efficiently. But the rubber electronics and sensors tested by a University of Houston team could solve this challenge by providing flexibility and sufficient electron flow. A new study published in the Science Advances journal found the material allowed the electronic functions to retain their electrical performance by more than 55% when the material was stretched by 50%.

“It’s a piece of rubber, but it has the function of a circuit and sensors,” Cunjiang Yu, an assistant professor of mechanical engineering at the University of Houston and study author, told Live Science.

The rubber comes from low-cost, commercially-available materials that, as a result, allow the skin to be more widely produced at a lower price point. And because it starts in liquid form, it can be poured into molds and used for a variety of purposes like robotic skins, biomedical implants, wearable electronics or smart surgical gloves. Specifically for robotics, such an artificial skin would help the machine better sense its surroundings, and in turn protect humans it may work with.

The research team performed a series of experiments to test the material’s strain, pressure and temperature sensors including detecting water temperature and performing American Sign Language when applied to a robotic hand.

“This will change the field of stretchable electronics,” Yu said. The researchers plan to continue improving the material’s electronic performance and flexibility.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

UR20 cobot Universal Robots
Anders Beck introduces the UR20; California bans autonomous tractors
John Deere autonomous tractor
Calif.’s ongoing ban of autonomous tractors a major setback
cruise robotaxis in San Francisco
Cruise hits milestone by charging for robotaxis rides in SF
synkar mobile robot on sidewalk
Synkar offers sidewalk delivery as a service

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Anders Beck introduces the UR20; California bans autonomous tractors
See More >

Sponsored Content

  • Magnetic encoders support the stabilization control of a self-balancing two-wheeled robotic vehicle
  • How to best choose your AGV’s Wheel Drive provider
  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail