The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Regulatory Challenges Holding Back Healthcare AI

By Oliver Mitchell | March 12, 2018

It was the last question of the night, and it hushed the entire room. An entrepreneur expressed his aggravation about the US Food and Drug Administration’s (FDA) antiquated regulatory environment for AI-enabled devices to Dr. Joel Stein of Columbia University.

Stein, a leader in rehabilitative robotic medicine, sympathized with the startup, knowing that tomorrow’s exoskeletons will rely heavily on machine intelligence. Nodding her head in agreement, Kate Merton of JLabs shared the sentiment. Her employer, Johnson & Johnson, is partnered with Google to revolutionize the operating room through embedded deep learning systems.

In many ways, this astute observation encapsulated RobotLab this past Tuesday with our topic being “The Future Of Robotic Medicine,” the paradox of software-enabled therapeutics offering a better quality of life and the societal, technological and regulatory challenges ahead.

Reviewing FDA’s Policies for medical robotics

To better understand the frustration expressed at RobotLab, a review of the FDA’s policies relative to medical devices and software is required. Most devices fall within a criteria that was established in the 1970s. The “build and freeze” model whereby a product filed doesn’t change overtime and currently excludes therapies that rely on neural networks and deep learning algorithms that evolve with use.

Charged with progressing its regulatory environment, the Obama Administration established a Digital Health Program tasked with implementing new regulatory guidance for software and mobile technology. This initiative eventually led Congress to pass the 21st Century Cures Act (“Cures Act”) in December 2016. An important aspect of the Cures Act is its provisions for digital health products, medical software, and smart devices. The legislators singled out AI for its unparalleled ability to be used in supporting human decision making referred to as “Clinical Decision Support” (“CDS”) with examples like Google and IBM Watson.

Last year, the administration updated the Cures Act with a new framework that included a Digital Health Innovation Action Plan. These steps have been leading a change in the the FDA’s attitude towards mechatronics, updating its traditional approach to devices to include software and hardware that iterates with cognitive learning. The Action Plan states “an efficient, risk-based approach to regulating digital health technology will foster innovation of digital health products.”

In addition, the FDA has been offering tech partners the ability of filing a Digital Health Software Pre-Certification (“Pre-Cert”) to fast track the evaluation and approval process, current Pre-Cert pilot filings include Apple, Fitbit, Samsung and other leading technology companies.

Another way for AI and robotic devices to receive approval from the FDA is through the “De Novo premarket review pathway.” According to the FDA’s website, the De Novo program is designed for “medical devices that are low to moderate risk and have no legally marketed predicate device to base a determination of substantial equivalence.”

Many computer vision systems fall into the De Novo category using their sensors to provide “triage” software to efficiently identify disease markers based upon its training data of radiology images. As an example, last month the FDA approved Viz.ai a new type of “clinical decision support software designed to analyze computed tomography (CT) results that may notify providers of a potential stroke in their patients.”

Dr. Robert Ochs of the FDA’s Center for Devices and Radiological Health explains, “The software device could benefit patients by notifying a specialist earlier thereby decreasing the time to treatment. Faster treatment may lessen the extent or progression of a stroke.”

Viz.ai Receives FDA Approval

The Viz.ai algorithm has the ability to change the lives of the nearly 800,000 annual stroke victims in the USA. The data platform will enable clinicians to quickly identify patients at risk for stroke by analyzing thousands of CT brain scans for blood vessel blockages and then automatically send alerts via text messages to neurovascular specialists. Viz.AI promises to streamline the diagnosis process by cutting the traditional time it takes for radiologists to review, identify and escalate cases to specialists for high-risk patients.

Viz.ai

Dr. Chris Mansi, Viz.ai CEO, says “The Viz.ai LVO Stroke Platform is the first example of applied artificial intelligence software that seeks to augment the diagnostic and treatment pathway of critically unwell stroke patients. We are thrilled to bring artificial intelligence to healthcare in a way that works alongside physicians and helps get the right patient, to the right doctor at the right time.”

According to the FDA’s statement, Mansi’s company “submitted a study of only 300 CT scans that assessed the independent performance of the image analysis algorithm and notification functionality of the Viz.ai Contact application against the performance of two trained neuro-radiologists for the detection of large vessel blockages in the brain. Real-world evidence was used with a clinical study to demonstrate that the application could notify a neurovascular specialist sooner in cases where a blockage was suspected.”

Viz.ai joins a market for AI diagnosis software that is growing rapidly and projected to eclipse $6 billion by 2021 (Frost & Sullivan), an increase of more than forty percent since 2014. According to the study, AI has the ability to reduce healthcare costs by nearly half, while at the same time improving the outcomes for a third of all US healthcare patients. However, diagnosis software is only part of the AI value proposition, adding learning algorithms throughout the entire ecosystem of healthcare could provide new levels of quality of care.

A Backlog of Medical Robotics Innovation

At the same time, the demand for AI treatment is taking its toll on an underfunded FDA, which is having difficulty keeping up with the new filings to review computer-aided therapies from diagnosis to robotic surgery to invasive therapeutics. In addition, many companies are currently unable to afford the seven-figure investment required to file with the FDA, leading to missed opportunities to find cures for the most plaguing diseases.

The Atlantic reported last fall about a Canadian company, Cloud DX, that is still waiting for approval for its AI software that analyzes coughing data via audio wavelengths to detect lung-based diseases (i.e., asthma, tuberculosis, and pneumonia). “There’s a reason that tech companies like Google haven’t been going the FDA route [of clinical trials aimed at diagnostic certification],” said Cloud DX’s founder, Robert Kaul. “It can be a bureaucratic nightmare, and they aren’t used to working at this level of scrutiny and slowness.”

It took Cloud DX two years and close to a million dollars to achieve the basic ISO 13485 certification required to begin filing with the agency. Kaul, questioned, “How many investors are going to give you that amount of money just so you can get to the starting line?”

Last month, Rani Therapeutics raised $53 million to begin clinical trials for its new robotic pill. Rani’s solution could usher in a new paradigm of needle-free therapy, whereby drugs are mechanically delivered to the exact site of infection. Unfortunately, innovations like Rani’s are getting backlogged with a shortage of knowledgable examiners able review the clinical data.

Bakul Patel, the FDA’s New Associate Center Director For Digital Health, describes that one of his top priorities is hiring. “Yes, it’s hard to recruit people in AI right now. We have some understanding of these technologies. But we need more people. This is going to be a challenge.”

Patel is cautiously optimistic. “We are evolving … The legacy model is the one we know works. But the model that works continuously — we don’t yet have something to validate that. So the question is [as much] scientific as regulatory: How do you reconcile real-time learning [with] people having the same level of trust and confidence they had yesterday?”

As I concluded my discussion with Stein, I asked if he thought disabled people will eventually be commuting to work wearing robotic exoskeletons as easily as they do in electric wheelchairs? He answered that it could come within the next decade if society changes its mindset on how we distribute and pay for such therapies. To quote the President, “Nobody knew health care could be so complicated.”

About The Author

Oliver Mitchell

Oliver Mitchell is a partner at ff Venture Capital. Oliver first joined ff VC in 2014 as a Limited Partner, and then in 2018 as a Venture Partner. Today, he takes a leading role on the investment team in expanding the portfolio’s deep tech position with holdings in robotics, drones, artificial intelligence, and industrial automation technologies. Oliver also works with ffVC’s investor relations in forging strategic relationships for our limited partners and corporate venture groups. In addition, he serves on the boards of Civ Robotics, Cambrian Intelligence, AppBind, Storyfit, and Cardflight.

Previously, Oliver ran his own investment portfolio of a dozen companies that have since returned 8 exits, including two IPOs (NVCR and EKSO) and one unicorn (Triple Lift) with a combined value of over $20 billion. Previous startup outcomes have included selling Holmes Protection to ADT/Tyco, AmeriCash to American Express, and launching RobotGalaxy, a national consumer S.T.E.M. brand. Oliver is an Adjunct Professor at Sy Syms School of Business, and frequent writer of trade periodicals.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

A man walking down a crosswalk wearing the Ekso personal exoskeleton with a woman walking beside him. The man is also using crutches to stay steady.
NVIDIA accepts Ekso Bionics into its Connect program
RealMan Robotics offers a variety of mobile manipulators.
RealMan displays embodied robotics at Automate 2025
Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
Soon-to-be CEO Dave Rosa.
Intuitive Surgical is making a CEO change

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe