The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast

Mechanical controller design combines gripper features for robotic surgery

By The Robot Report Staff | February 22, 2020

Mechanical controller design combines gripper advantages for robotic surgery

A new controller design for robot-assisted surgery. Source: Tokyo Institute of Technology

This past week, scientists at the Tokyo Institute of Technology announced a new type of controller for the arms used in robot-assisted surgery. The mechanical controller combines two types of gripping used in commercial robots to take advantage of the best features of each and provide surgeons more precision, they said.

Robotics has weaved its way into many different fields, and in healthcare, robotic surgery has advanced dramatically in the past decade. Robot-assisted surgery is usually performed using surgical robot systems that involve a master-slave configuration, in which the “master” is a controller device that the surgeon manipulates to control a robotic arm.

Such systems improve the dexterity and precision of surgeons by filtering out hand tremors and scaling their hand motions into smaller movements. They also reduce the risk of common surgical complications such as surgical site infection.

Overcoming human grasping limitations

However, robot-assisted surgery comes with its own disadvantages, especially for the person performing the surgery. Robotic surgeons sometimes feel physical discomfort during surgery, with finger fatigue being common. This discomfort is associated with the way in which they grip the master controller.

Two types of grips are usually used to control surgical robots: the “pinch grip” and “power grip.” The pinch grip has been used in conventional surgeries for centuries; it involves using the thumb, middle, and index fingers to achieve high-precision movements. On the other hand, the power grip involves grabbing a handle with the entire hand and is more suitable for forceful work and large movements.

Because the pinch grip puts tension on certain muscles of the hand and fingers, it is more likely to cause fatigue. And although the power grip does not seem to cause such discomfort, it offers less precise control. Therefore, there is a tradeoff between the discomfort caused by the pinch grip and the lack of fine control of the power grip.

Fortunately, Solmon Jeong and Kotaro Tadano, two researchers at Tokyo Institute of Technology (Tokyo Tech), found a clever solution to this problem. In a study published in The International Journal of Medical Robotics and Computer Assisted Surgery, they speculated that a master controller that combines both types of gripping can be designed.

“In robotic surgery, the limitations of the two conventional gripping methods are strongly related to the advantages and disadvantages of each gripping type,” said Dr. Tadano. “Thus, we wanted to investigate whether a combined gripping method can improve the manipulation performance during robotic surgery, as this can leverage the advantages of both gripping types while compensating for their disadvantages.”

controller robot gripper

Examples of gripping types: A. pinch grip, B. combined grip, and C. power grip. Source: The International Journal of Medical Robotics and Computer Assisted Surgery, via Wiley Online Library

Adjustable master controller

After a proof-of-concept experiment that yielded promising results, the researchers designed a robotic surgery system with a modular master controller that could be adjusted to employ either pinch, power, or combined gripping.

The system was tested through a pointing experiment, in which 15 participants had to control a robotic arm to bring the tip of a needle into target holes in the least amount of time without touching obstacles. Various conditions were tested for each gripping type, such as the use of arm and palm rests, use of handle, gripping type, and pinch grip motion.

The findings showed that the combined grip yielded better performance in the pointing experiment on various fronts, including number of failures (touching an obstacle), time required, and overall length of the movements performed to reach the targets. Many participants also reported to prefer the combined gripping method over the other two, owing to the ease and comfort in using this method.

This new master controller design could be a step in the right direction in robot-assisted surgery.

“The manipulating method of master controllers for robotic surgery has a significant influence in terms of intuitiveness, comfort, precision, and stability. In addition to enabling precise operation, a comfortable manipulating method could potentially benefit both the patient and the surgeon,” said Tadano.

Although future work is needed to analyze other variables involved in robotic arm manipulation, this work could benefit advanced surgical robot systems.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Laser-steering microrobot aims to refine minimally invasive surgery
Orthosensor Mako Surgical robots
Stryker acquires OrthoSensor to enhance Mako surgical robots
Distalmotion Dexter surgical robot receives European CE Mark
Top 10 transactions in robotics in 2020
Top 10 transactions in robotics in 2020

Robotics Year in Review

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Teradyne’s acquisition strategy & the future of cobot

The Robot Report Podcast · Teradyne's acquisition strategy & the future of cobots

Sponsored Content

  • Doosan Robotics: Driving Innovation and Growth in Cobots
  • FORT Robotics Podcast: FORT Robotics on how to keep humans safe and in control of robots
  • Pallet Detection Systems Help Automated Forklifts Modernize Warehouse Operations
  • IES Servo Control Gripper
  • How to cut the cost of manufacturing

Tweets by RoboticTips

The Robot Report
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast