The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Inside Meta’s research with Boston Dynamics’ Spot

By Brianna Wessling | July 21, 2023

Researchers at Meta AI and Fundamental AI Research (FAIR) have been working with Boston Dynamics‘ Spot quadruped to push the robot to new heights. Their research resulted in two significant breakthroughs toward creating general-purposed embodied AI agents that are capable of performing challenging sensorimotor skills. 

While Spot has been at work with industrial users since 2019, one of its primary purposes, according to the Boston Dynamics team, is for researchers who want to use the robot as a platform to push the field forward. 

When they started working with Spot, Meta researchers were particularly interested in making Spot better at high-level reasoning and planning, making it able to handle unfamiliar environments and understand simple, natural language instructions.  

Meta and FAIR’s team trained three Spot robots with simulation data. This training involved allowing the robots to see what it looks like to retrieve everyday objects in various settings, including home, apartment, and office settings. The team then tested the robots’ ability to navigate new spaces and overcome unexpected obstacles to retrieve those objects in the real world working across three different locations in California, New York, and Georgia. 

“Compared with a more traditional way of doing the same tasks, we found that we could get much higher success because our policies were more robust, and they allowed the robot to deal with disturbances that happened in the real world,” Akshara Rai, a research scientist on the FAIR team, said. “If the object is not where it is supposed to be, the robot can re-plan based on the environment and the information that the robot has. Spot is already very good at navigating an environment if we give it a map beforehand. The most important thing we’re adding is this generalization to a completely unseen environment.”

With these methods, the team was able to develop an artificial visual cortex called VC-1, the team’s first breakthrough. VC-1 matches or outperforms best-known results on 17 different sensorimotor tasks in virtual environments. 

The second breakthrough the team made was developing a new approach called adaptive, or sensorimotor, sill coordination (ASC). ASC achieves near-perfect performance on robotic mobile manipulation testing. With ASC, Spot succeeded in 98% of its attempts to locate and retrieve an unfamiliar object, compared to just a 73% success rate with traditional methods. 

“The way that Meta is using Spot is exactly how we hoped people would use the robot when we designed it,” Zack Jackowski, general manager for Spot at Boston Dynamics, said. “Right now, Spot can walk a repeatable path through an industrial facility and keep track of equipment performance, and that’s valuable. We would all love it if we could get to the point where we can say, ‘Hey Spot, go take a look at that pump on the floor there.’ That’s the kind of thing that the Meta team is working on.”

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, robotics in healthcare, and space robotics.

She can be reached at [email protected]

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

An illustration of two Franka arms picking items in simulation.
PickNik expands support for Franka Research 3 robot on MoveIt Pro
A small drone flying into fog in a dark room.
Bats inspire WPI researchers to develop drones using echolocation
Three drones work together to carry a package using a new algorithm developed at TU Delft.
TU Delft algorithm to enables drones to work together to transport heavy payloads
Mr Tung Meng Fai, Executive Director, National Robotics Programme (NRP); Professor Tan Chorh Chuan, Chairman, Agency for Science, Technology and Research (A*STAR); Ms Vanessa Yamzon Orsi, CEO, Open Source Robotics Foundation; and Dr Wang Wei, Deputy Executive Director (R&D) at A*STAR SIMTech and A*STAR ARTC, attended ROSCon on 28 October 2025.
Singapore’s National Robotics Programme reveals initiatives to advance robot adoption

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Supporting the future of medical robotics with smarter motor solutions
  • YUAN Unveils Next-Gen AI Robotics Powered by NVIDIA for Land, Sea & Air
  • ASMPT chooses Renishaw for high-quality motion control
  • Revolutionizing Manufacturing with Smart Factories
  • How to Set Up a Planetary Gear Motion with SOLIDWORKS
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe