The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

How soft robots could be remotely controlled via magnetic fields

By Adam Malecek | April 18, 2020

remotely controlling soft robots

An applied magnetic field (in blue) can cause magnetized particles embedded in a soft material to rearrange themselves into new patterns. By harnessing this phenomenon, researchers can fine-tune the soft material’s properties. | Xin You, Grainger Institute for Engineering

Soft materials, such as rubber or polymers that can endure drastic changes to their shape, are promising for applications where flexibility and shapeshifting abilities are paramount.

For example, these materials can be used to create soft robots suited for specialized tasks, ranging from medical devices that could navigate around inside the body to robots for search-and-rescue missions that can squeeze through small openings.

But to power a soft robot’s movement or transformations, researchers often use actuators that need to be physically connected to the robot, which limits its usefulness.

“These actuators are usually much larger than the robot itself,” said Stephan Rudykh, a University of Wisconsin–Madison mechanical engineering professor. “For example, you might have a huge tank of compressed air that’s attached to the robot by a cable and used to inflate the soft materials and power the robot.”

A team led by Rudykh has devised a way to cut that cord on soft robots.

Related: Stanford developing tetherless soft robot that changes shape

In a paper published in the journal Physical Review Letters, the researchers demonstrated a method for using magnetic fields to remotely induce soft composite materials to rearrange their internal structure into a variety of new patterns.

“We showed that in a relatively simple system, we could get a very wide spectrum of different patterns that were controlled by the level of the magnetic field, including patterns that would be impossible to achieve by applying mechanical loading alone,” Rudykh said. “This advance could enable us to design new soft materials with enhanced performance and functionality.”

Stephan Rudykh

The ability to tweak a material’s fine internal structure in this way allows researchers to tailor its physical properties and to even switch different properties on and off as desired. And since harnessing magnetic fields eliminates the need for direct contact or pesky cables, new soft materials could be useful for applications such as medical implants, Rudykh said.

In collaboration with researchers from the Air Force Research Laboratory, the team demonstrated and analyzed the newly formed patterns using a soft elastomeric material. Inside the soft material, the team embedded small particles of stiff, magnetizable material in a simple periodic pattern.

Then, the researchers applied different levels of magnetic fields to the material, which caused the magnetized particles to rearrange and create forces and stresses within the soft material.

Rudykh says the new patterns that emerged from the rearranged particles varied from highly organized and repeating patterns to unique patterns that seemingly have large-scale order but are disorganized at the local level.

“Notably, we can tune the magnetic field to produce a desired pattern and switch the material’s properties,” Rudykh said. “I’m excited to further explore this phenomenon in more complex material systems.”

Editor’s Note: This article was republished from the University of Wisconsin-Madison.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Rainbow Robotics' RB-Y1 robot from the waist up.
Rainbow Robotics unveils omnidirectional wheels, development kit for its dual-arm robot
limx robot in the foreground plcking an item from the ground.
TRON1 robot extends its reach with a new optional arm
Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
The Northeastern team that won the MassRobotics Form & Function Challenge.
Northeastern soft robotic arm wins MassRobotics Form & Function Challenge at Robotics Summit

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe