The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

evoBOT completes first tests at Munich Airport

By Brianna Wessling | June 20, 2023

evoBOT, an autonomous mobile robot (AMR) developed at the Fraunhofer Institute for Material Flow and Logistics IML, completed its first test run at the Munich Airport.

With its unique design consisting of two wheels and gripper arms, evoBOT keeps itself balanced while performing a range of tasks. The self-balancing robot can handle hazardous goods, transport parcels for longer recurring distances, relieve employees during lifting and overhead work, procure materials, and provide support during the loading and unloading of an aircraft.

evoBOT can reach a maximum speed of up to 60 km/hour (around 37 MPH) and can transport a load of up to 100 kg (over 220 lbs). It is a dynamically-stable system based on the principle of an inverse compound pendulum, which means it doesn’t have an external counterweight. Its ability to balance makes it able to move on different and uneven surfaces.

“Our evoBOT is the beginning of a new population of autonomous vehicles and robots. With its arms and the fact that it moves on two wheels, it represents a step on the path to the humanoid future of robotics. The practical test carried out at Munich Airport impressively underpins the potential of this development. The evoBOT can work as a fellow colleague in a wide range of applications,” professor Michael ten Hompel, managing director of Fraunhofer IML, said.


At Munich Airport, evoBOT has performed a practical test in the cargo terminal and on the apron of the airport. The airport tests further proved how versatile the robot is.

“The development and expansion of the cargo and logistics sector are essential components of our corporate strategy. We welcome every initiative to optimize and digitalize handling processes. The evoBOT will facilitate the day-to-day work of our employees in the cargo area and make the workplace more attractive”, Jost Lammers, Chief Executive Officer of Munich Airport, said.

The collaboration included participation from Cargogate Munich Airport GmbH, Fraunhofer IML, the Digital Testbad Air Cargo (DTAC) project consortium, CHI Deutschland Cargo Handling GmbH, Flughafen Köln/Bonn GmbH, Frankfurt University of Applied Sciences, Fraport AG Frankfurt Airport Services Worldwide, Lufthansa Cargo AG, LUG aircargo handling GmbH, Mitteldeutsche Flughafen AG, Schenker Deutschland AG, and Sovereign Speed GmbH.

evoBOT.

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Comments

  1. Jochen Schuetze says

    June 23, 2023 at 6:22 am

    This is a great technology for autonomous delivery and a support tasks. Very impressing.
    Perfect application for all types of wireless technology, like communication, battery charging,…

    Reply
  2. Adam says

    September 27, 2023 at 4:53 pm

    I work at a megalab and we are interested to see if this program is looking for pilot partners? We like the robot a lot! taylora@aclab.com

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

An ABB robot painting a car hood.
ABB deploys PixelPaint at Mercedes-Benz plant in Germany
Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
New enabling technologies from Automate 2025
Soon-to-be CEO Dave Rosa.
Intuitive Surgical is making a CEO change

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe