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applications such as autonomous vehicles and real-time video recognition.

Artificial neural networks are collections of nodes with weighted con-

nections that, with proper feedback to adjust the network parameters, 

can ‘learn’ and perform complex operations for facial recognition, 

speech translation, playing strategy games and medical diagnosis1–4. 

Whereas classical fully connected feedforward networks face chal-

lenges in processing extremely high-dimensional data, convolutional 

neural networks (CNNs), inspired by the (biological) behaviour of the 

visual cortex system, can abstract the representations of input data 

in their raw form, and then predict their properties with both unprec-

edented accuracy and greatly reduced parametric complexity5. CNNs 

have been widely applied to computer vision, natural language process-

ing and other areas6,7.

The capability of neural networks is dictated by the computing power 

of the underlying neuromorphic hardware. Optical neural networks 

(ONNs)8–12 are promising candidates for next-generation neuromorphic 

computation, because they have the potential to overcome some of the 

bandwidth bottlenecks of their electrical counterparts6,13–15 such as for 

interconnections16, and achieve ultrahigh computing speeds enabled by 

the >10-THz-wide optical telecommunications band8. Operating in ana-

logue frameworks, ONNs avoid the limitations imposed by the energy 

and time consumed during reading and moving data back and forth for 

storage, known as the von Neumann bottleneck13. Important progress 

has been made in highly parallel, high-speed and trainable ONNs8–12,17–22, 

including approaches that have the potential for full integration on a 

single photonic chip8,12, in turn offering an ultrahigh computational 

density. However, there remain opportunities for substantial improve-

ments in ONNs. Processing large-scale data, as needed for practical 

real-life computer vision tasks, remains challenging for ONNs because 

they are primarily fully connected structures and their input scale is 

determined solely by hardware parallelism. This leads to tradeoffs 

between the network scale and footprint. Moreover, ONNs have not 

achieved the extreme computing speeds that analogue photonics is 

capable of, given the very wide optical bandwidths that they can exploit.

Recently22, the concept of time–wavelength multiplexing for ONNs 

was introduced and applied to a single perceptron operating at 11 billion 

(109) operations persecond (giga-ops persecond). Here, we demon-

strate an optical convolutional accelerator (CA) to process and extract 

features from large-scale data, generating convolutions with multiple, 

simultaneous, parallel kernels. By interleaving wavelength, temporal 

and spatial dimensions using an integrated Kerr microcomb source23–32, 

we achieve a vector computing speed as high as 11.322 TOPS. We then 

use it to process 250,000-pixel images, at a matrix processing speed 

of 3.8 TOPS.

The CA is scalable and dynamically reconfigurable. We use the same 

hardware to form both a CA front end and a fully connected neuron 

layer, and combine them to form an optical CNN. The CNN performs 
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length of the kernels are arbitrary, limited only by the total number 

of wavelengths.

The CA processes vectors, which is extremely useful for human 

speech recognition or radio-frequency signal processing, for exam-

ple. However, it can easily be applied to matrices for image process-

ing by flattening the matrix into a vector. The precise way that this 

is performed is governed by the kernel size, which determines both 

the sliding convolution window’s stride and the equivalent matrix 

computing speed. In our case the 3×3 kernel reduces the speed by a 

factor of 3, but we outline straightforward methods to avoid this (see 
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