The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Watch: NVIDIA Self-Driving Car Learns How to Become a Better Driver

By Steve Crowe | May 13, 2016

When compared to the 1.5 million miles autonomously driven by Google’s self-driving cars, the three thousand miles NVIDIA’s self-driving car drove in one month seems like peanuts.

But if you watch the video above, there’s no doubt you’ll be impressed with what NVIDIA is doing.

NVIDIA has been working on self-driving cars that run its DAVENET deep-learning network (we’ll explain later). As you can see in the first 32 seconds of the above video, things were a little rough for the deep-learning car as it first hit the road, running over traffic cones, nearly hitting trash cans, getting confused by several roads. Human intervention was often required.

PODCAST: How NVIDIA’s Jetson TX1 is Making Robots Smarter

But the point of the above video is to show just how far NVIDIA has come. After 3,000 miles of learning, the car appears to handle the roads, and the rain, much better.

So, how does NVIDIA’s self-driving car learn how to become a better driver? We’ll let NVIDIA explain:

Using the NVIDIA DevBox and Torch 7 (a machine learning library) for training, and an NVIDIA DRIVE PX self-driving car computer to process it all, our team trained a CNN with time-stamped video from a front-facing camera in the car synced with the steering wheel angle applied by the human driver.

We collected the majority of the road data in New Jersey, including two-lane roads with and without lane markings, residential streets with parked cars, tunnels and even unpaved pathways. More data was collected in clear, cloudy, foggy, snowy and rainy weather, both day and night.

Using this data, our team trained a CNN to steer the same way a human did given a particular view of the road and evaluated in simulation. Our simulator took videos from the data-collection vehicle and generated images that approximate what would appear if the CNN were instead steering the vehicle.

Once the trained CNN showed solid performance in the simulator, we loaded it onto DRIVE PX and took it out for a road test in the car. The vehicle drove along paved and unpaved roads with and without lane markings, and handled a wide range of weather conditions. As more training data was gathered, performance continually improved. The car even flawlessly cruised the Garden State Parkway.

Our engineering team never explicitly trained the CNN to detect road outlines. Instead, using the human steering wheel angles versus the road as a guide, it began to understand the rules of engagement between vehicle and road.

Impressive stuff. This project kicked off nine months ago at NVIDIA to build on the DARPA Autonomous Vehicle (DAVE) research to create a robust system for driving on public roads. To learn more, check out NVIDIA research paper “End to End Learning for Self-Driving Cars.“

About The Author

Steve Crowe

Steve Crowe is Executive Editor, Robotics, WTWH Media, and chair of the Robotics Summit & Expo and RoboBusiness. He is also co-host of The Robot Report Podcast, the top-rated podcast for the robotics industry. He joined WTWH Media in January 2018 after spending four-plus years as Managing Editor of Robotics Trends Media. He can be reached at scrowe@wtwhmedia.com

Related Articles Read More >

ForSight Robotics.
ForSight Robotics raises $125M for cataract surgery tech
Parkhotel employees in Eisenstadt, Austria, celebrate the arrival of Pudu service robots.
Pudu Robotics CEO predicts that service robot market will expand
Meet the RBR50 Robotics Innovation Awards Winners
Picking robot shipments graph.
Over 150,000 picking robots to be installed by 2030

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • How to Set Up a Planetary Gear Motion with SOLIDWORKS
  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe