The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Watch a quadruped walk along a balance beam

By Brianna Wessling | April 19, 2023

From MIT teaching a quadruped to dribble a soccer ball, to Carnegie Mellon and UC Berkeley researchers teaching them to manipulate objects with their legs, to Ghost Robotics’ Vision 60 quadruped’s latest swimming capabilities, quadrupeds have been taking steps lately towards being able to go anywhere humans can. 

Now, researchers at Carnegie Mellon University’s Robotics Institute (RI) have designed a system that can make an off-the-shelf quadruped robot nimble enough to walk a narrow balance beam. The team used hardware that is often used to control satellites in space to help offset existing constraints in the quadruped’s design to improve its balancing capabilities. 

Typically, quadrupeds need to have at least three of their rounded feet on the ground to keep their balance, making walking through rough terrain, or on a balance beam, very difficult. Current control methods also decouple a quadruped’s body and legs, so they don’t communicate with each other to coordinate their movements. 

To combat these restraints, the team employed a reaction wheel actuator (RWA) system that mounts to the back of a quadruped robot. RWAs are traditionally used in the aerospace industry to perform altitude control on satellites by manipulating the angular momentum of the spacecraft. In this case, the RWA, along with a novel control technique, allows the robot to balance independently of the positions of its feet. 

The Carnegie Mellon team’s prototype had two RWAs mounted on a commercial Unitree A1 robot, one on the pitch axis and one on the roll axis, to provide control over the robot’s angular motion. 

With the RWA, it doesn’t matter if the robot’s legs are in contact with the ground or not, because the hardware doesn’t change the robot’s mass distribution and doesn’t come with the joint limitations of a tail or spine, which many quadrupedal animals use to achieve this same balance. Without these constraints, the hardware can be modeled like a gyrostat, an idealized model of a spacecraft, and integrated into a standard model predictive control algorithm. 

The team tested it system in simulation and on hardware. In simulation, they dropped the robot upside down from nearly half a meter, mimicking the falling-cat problem, and the RWAs enabled the robot to reorient itself mid-air and land on its feet, just like cats do. On hardware, the robot was able to recover from disturbances with an experiment where the robot walked along a 6-cm-wide balance beam. 

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Comments

  1. Sebastian Palma says

    April 22, 2023 at 5:27 am

    Can the robot withstand strong wind

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

SS Innovations International's SSI Mantra 3.
SS Innovations completes its first cardiac surgery in the Americas with SSi Mantra
The opening ceremony for the Premier Innovation Hub near Pittsburgh.
Premier Automation launches innovation hub in Pennsylvania
farm-ng Amiga robot. It said its new software interface makes the Amiga modular robot even easier to use, with improved implement control and repeatable task automation.
farm-ng updates Amiga robot software for small, midsize farms
By integrating robotics, advanced motion control, and intelligent safety systems, this innovative solution delivered exceptional results for a time sensitive infrastructure project.
Welding project uses robotics to crunch 12 workhours into 45 minutes

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe