The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Unity demos how synthetic data can help robots learn

By The Robot Report Staff | March 2, 2021

Unity Object Pose Estimation

Unity is showcasing how its AI and machine learning capabilities could benefit industrial robotics. The new demo, called Object Pose Estimation, demonstrates how synthetic data can help robots learn rather than be programmed.

Training data is collected in Unity and used to train a deep neural network that predicts the pose of a cube. This model is then deployed in a simulated robot pick-and-place task. The Object Pose Estimation demo succeeds the release of Unity’s URDF Importer, an open-source Unity package for importing a robot into a Unity scene from its URDF file that takes advantage of enhanced support for articulations in Unity for more realistic kinematic simulations, and Unity’s ROS-TCP-Connector. This reduces the latency of messages being passed between ROS nodes and Unity, allowing the robot to react in near real-time to its simulated environment.

Unity said the demo build on prior work by showing how its computer vision tools, and the recently released Perception Package, can be used to create synthetic, labeled training data to train a deep learning model to predict a cube’s position. The demo provides a tutorial on how to recreate this project, which can be extended by applying tailored randomizers to create more complex scenes.

“This is a powerful example of a system that learns instead of being programmed, and as it learns from the synthetic data, it is able to capture much more nuanced patterns than any programmer ever could,” said Dr. Danny Lange, senior VP of AI, Unity. “Layering our technologies together shows how we are crossing a line, and we are starting to deal with something that is truly AI, and in this case, demonstrating the efficiencies possible in training robots.”

Object Pose Estimation, and its corresponding demonstration, come on the heels of recent releases from Unity that are aimed at supporting the Robot Operating System (ROS), the popular open-source robotics framework.

“You can develop the control systems for an autonomous vehicle, for example, or for highly expensive robotic arms, without the risk of damaging equipment or dramatically increasing cost of industrial installations,” added Lange. “To be able to prove the intended applications in a high-fidelity virtual environment will save time and money for the many industries poised to be transformed by robotics combined with AI and Machine Learning.”

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

A Waymo vehicle driving on a freeway.
Waymo’s highway driving sets stage for wider robotaxi expansion
U.S. Marines with Advanced Infantry Training Battalion perform a kinetic first-person view drone range. | Source: United States Marine Corps.
Drone maker Neros closes Series B round to expand industrial capacity
Dallas-based Isembard is working to enable U.S. reindustrialization. Source: Isembard
Veteran leads Isembard efforts to reshore U.S. manufacturing
Terranova's technology at a construction site.
Terranova gets seed funding to deploy terraforming robots

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Supporting the future of medical robotics with smarter motor solutions
  • YUAN Unveils Next-Gen AI Robotics Powered by NVIDIA for Land, Sea & Air
  • ASMPT chooses Renishaw for high-quality motion control
  • Revolutionizing Manufacturing with Smart Factories
  • How to Set Up a Planetary Gear Motion with SOLIDWORKS
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe