The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast

The state of industrial robotics: challenges & opportunities

By Steve Crowe | January 4, 2021

Listen to this article
Voiced by Amazon Polly

industrial robotics markets

The Massachusetts Institute of Technology (MIT) recently released a study called “The State of Industrial Robotics: Emerging Technologies, Challenges, and Key Research Directions” that described challenges of adopting and using industrial robotics. It also made recommendations about how to move the industry forward.

Mainly focused on industrial robotics in Europe, the report detailed findings from interviews with robot manufacturers, original equipment manufacturers that use robotics technologies, and industrial research institutions. The report used the International Federation of Robotics’ definition of industrial robots, saying they are “automatically controlled, reprogrammable multipurpose manipulators programmable in three or more axes.”

You can read the full report here (PDF). The report was produced as part of the MIT Work of the Future initiative. Worker resistance has not seemed to play a big role in slowing adoption of industrial robots, according to MIT. This is partly because of worker protections in Europe that limit layoffs and partly because leading companies have recognized that involving workers in decisions on how to redesign manufacturing lines results in both better technical decisions and greater acceptance of new technology.

Challenges holding back industrial robots

High cost of integration: While robot hardware has become cheaper, the cost of the robot is a small fraction of the overall price tag of introducing automation to a manufacturing line. The study cited one large, well-known robotics integrator that said, “robots are now inexpensive, but integration is not.” And not only can the initial integration process be long, arduous, and expensive, even small changes to a manufacturing line often require bringing in an integrator to redesign and repurpose robot workcells to meet the specifications of new tasks.

According to the report, many companies cited the high costs of integration as a barrier to adoption. Large manufacturers using industrial robots can get weighed down attempting to integrate existing 15- to 20-year-old technologies and infrastructures with new robotics technologies on the same manufacturing line. On the other hand, SMEs with production processes that run at a smaller scale, often find integration costs to be prohibitive or unjustifiable due to their smaller production lot sizes.

Lack of standards: The absence of standardization in many aspects of robotics made it difficult for some companies to exploit the full potential of promising technologies or to incorporate new types of robots into manufacturing lines. Some companies developed home-grown systems and capabilities over the years that they would prefer to continue to use. Others, often smaller companies, are designing manufacturing lines or purchasing new technologies from the ground up. Each type of robot might require knowledge of different programming languages, interfaces, or communication protocols for use. Standardization should cover all of these considerations, besides safety standards and hardware.

“Standardization is not as easy as one thinks,” according to a large robotics company cited by the study. “There are many experts to listen to. It must go hand-in-hand with which technologies are capable of what things and an understanding of the processes they’re part of.”

Inflexibility: The fact that current robotics technologies cannot always be quickly repurposed limited the potential use cases of robots as well as experienced line workers’ ability to leverage their deep domain knowledge to improve manufacturing processes through direct repurposing of the robots.

Flexibility was also considered important for increasing the applicability of robotics to different levels of production, including high-mix and low-volume production; faster integration and reintegration times; re-configurable workcells and manufacturing lines; reducing the factory footprint by allowing manufacturing of multiple products along a single line; and enabling the reusability of robots.

Better balance of speed and safety: Collaborative robots are inherently safer, but uptake remains limited in some environments. The report said large companies favor speed over integration with humans, especially since cobots are not optimal for certain tasks. A balance among safety, speed, and versatility would encourage investment in cobots.

Data protocols: Better data infrastructures could help companies make “smart data from big data,” as a large multinational put it. As it stands, companies are resistant to investing in these infrastructures, as a clear benefit does not currently exist.

Improvements to enabling technologies: Extreme robustness, faster integration, and removal of technological bottlenecks related to sensing, perception, and gripping are critical to encouraging investment in and the mass adoption of automation. For example, the study said that while vision technologies are promising for ensuring the safety of robots and reducing quality check costs, they are still a long way from being optimal.

“Our research shows that vision systems and corresponding algorithms often performed well in research settings or other well-controlled settings, but they broke down, in different ways, in actual factories. Without rock-solid reliability, recent advancements in algorithms (such as deep learning-based architectures) are not robust enough to be used.”

Pages: 1 2

About The Author

Steve Crowe

Steve Crowe is Editor of The Robot Report and co-chair of the Robotics Summit & Expo. He joined WTWH Media in January 2018 after spending four-plus years as Managing Editor of Robotics Trends Media. He can be reached at [email protected]

Comments

  1. Vernelljohnson says

    January 7, 2021 at 6:44 pm

    Hello I have been programming robots since 1998 and those same handicaps of integration costs are slowly declining because the workers are becoming more robot friendly and eventually advancing to the level of helping Lee the robots running longer. The bigger companies have been implementing this for years now in automotive. It may take a little while but involving the the regular worker is the key, they will become the integrator for the company

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

4 robotics applications accelerated by COVID-19
Top 10 transactions in robotics in 2020
Top 10 transactions in robotics in 2020
autonomous vehicles November 2020
Robotics investments recap: November 2020
Spot 2.1 from Boston Dynamics includes enhancements for autonomous data collection
Boston Dynamics talks about its big year and acquisition by Hyundai

Robotics Year in Review

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Teradyne’s acquisition strategy & the future of cobot

The Robot Report Podcast · Teradyne's acquisition strategy & the future of cobots

Sponsored Content

  • Doosan Robotics: Driving Innovation and Growth in Cobots
  • FORT Robotics Podcast: FORT Robotics on how to keep humans safe and in control of robots
  • Pallet Detection Systems Help Automated Forklifts Modernize Warehouse Operations
  • IES Servo Control Gripper
  • How to cut the cost of manufacturing

Tweets by RoboticTips

The Robot Report
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast