The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Stanford researchers create gecko inspired robotic hand

By Brianna Wessling | December 18, 2021

gecko inspired gripper

The key to this robotic hand’s grip are at the ends of its fingers. It’s unique adhesive pads help it to grip objects with little force. | Source: Stanford University

Stanford researchers set out to make a robotic hand that can do it all, from picking up delicate objects like raw eggs and tomatoes, to handling large objects like basketballs.

“You’ll see robotic hands do a power grasp and a precision grasp and then kind of imply that they can do everything in between,” said Wilson Ruotolo, PhD ’21, a former graduate student in the Biomimetics and Dextrous Manipulation Lab at Stanford University. “What we wanted to address is how to create manipulators that are both dexterous and strong at the same time.”

Ruotolo and Dane Brouwer, a graduate student in the Biomimetics and Dexterous Manipulation Lab at Stanford, took a unique approach to developing their robotic hand, farmHand.

FarmHand takes inspiration from biology. It’s four, multi-jointed fingers resemble human hands, but the ends of the fingers are covered in gecko-inspired adhesives. The adhesives have been in development for the last decade at the Biomimetics and Dexterous Manipulation Lab, led by Mark Cutkosky.

The material the adhesives are made up of isn’t sticky. Rather, they grip to an object using microscopic flaps that create a Van der Waals force, similar to the toes of geckos. A Van der Waals force is a weak intermolecular force that comes from small differences in the positions of electrons.

The gecko-adhesives are able to grip strongly, with little force, and don’t feel sticky or leave behind a residue. They seem like the perfect answer to the problem, and they’ve been used in similar applications before.

In 2019, OnRobot released an end effector for collaborative robot arms called the Gecko gripper. This gripper used millions of micro-scaled fibillar stalks that adhere using a Van der Waals force. In 2020, the company released a smaller version of the gripper.

“The first applications of the gecko adhesives had to do with climbing robots, climbing people or grasping very large, very smooth objects in space. But we’ve always had it in our minds to use them for more down-to-earth applications,” said Cutkosky. “The problem is that it turns out that gecko adhesives are actually very fussy.”

OnRobot releases Gecko gripper at ATX West

OnRobot’s Gecko Gripper uses similar technology

The grippers need to connect with a surface in a particular way to work. For example, OnRobot’s end effectors are flat, and can only pick up flat, smooth objects. The grippers are a more environmentally friendly alternative to vacuum end effectors.

There are three principles that the researchers focused on to make the gecko adhesives useful in everyday applications: high contact area, shear load sharing and evenly distributed normal stress.

The researchers found the key to making the adhesives work in the finger pads below the adhesives. The finger pads are made of a collapsible rib structure that buckles under little force. The buckling ensures that there are equal forces on the adhesives.

Another key aspect to the hand are its tendons. Many robotic hands pinch objects in a “C” shape, but farmHand instead hyperextends to make more of a pinching motion. This way, farmHand picks up objects with the pads of it’s fingers pressed together.

To test farmHand, the researchers 3D printed hard and soft plastic components. Typically, researchers would use computer simulations to test different designs, but the researchers had to use other means because existing computer programs are unable to predict real world performance with soft objects.

To further improve farmHand, researchers are exploring feedback features that would help them understand how the hand is gripping and how it can be improved while it’s in use. They are also considering commercial uses for farmHand.

Editor’s Note: The researchers entire study can be found here.

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Rainbow Robotics' RB-Y1 robot from the waist up.
Rainbow Robotics unveils omnidirectional wheels, development kit for its dual-arm robot
limx robot in the foreground plcking an item from the ground.
TRON1 robot extends its reach with a new optional arm
Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
The Northeastern team that won the MassRobotics Form & Function Challenge.
Northeastern soft robotic arm wins MassRobotics Form & Function Challenge at Robotics Summit

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe