The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast

Stanford AI Camera Offers Faster, More Efficient Image Classification

By Andrew Myers, Stanford News | August 20, 2018


The image recognition technology that underlies today’s autonomous cars and aerial drones depends on artificial intelligence: the computers essentially teach themselves to recognize objects like a dog, a pedestrian crossing the street or a stopped car. The problem is that the computers running the artificial intelligence algorithms are currently too large and slow for future applications.

Now, researchers at Stanford University have devised a new type of artificially intelligent camera system that can classify images faster and more energy efficiently, and that could one day be built small enough to be embedded in the devices themselves, something that is not possible today. The work was published in the August 17 Nature Scientific Reports.

“That autonomous car you just passed has a relatively huge, relatively slow, energy intensive computer in its trunk,” said Gordon Wetzstein, an assistant professor of electrical engineering at Stanford, who led the research. Future applications will need something much faster and smaller to process the stream of images, he said.

Consumed by computation

Wetzstein and Julie Chang, a graduate student and first author on the paper, took a step toward that technology by marrying two types of computers into one, creating a hybrid optical-electrical computer designed specifically for image analysis.

The first layer of the prototype camera is a type of optical computer, which does not require the power-intensive mathematics of digital computing. The second layer is a traditional digital electronic computer.

A Stanford-designed hybrid optical-electrical computer designed for image analysis could be ideal for autonomous vehicles. (Credit: Andrey Suslov / Getty Images)

The optical computer layer operates by physically preprocessing image data, filtering it in multiple ways that an electronic computer would otherwise have to do mathematically. Since the filtering happens naturally as light passes through the custom optics, this layer operates with zero input power. This saves the hybrid system a lot of time and energy that would otherwise be consumed by computation.

“We’ve outsourced some of the math of artificial intelligence into the optics,” Chang said.

The result is profoundly fewer calculations, fewer calls to memory and far less time to complete the process. Having leapfrogged these preprocessing steps, the remaining analysis proceeds to the digital computer layer with a considerable head start.

“Millions of calculations are circumvented and it all happens at the speed of light,” Wetzstein said.

Rapid decision-making

In speed and accuracy, the prototype rivals existing electronic-only computing processors that are programmed to perform the same calculations, but with substantial computational cost savings.

While their current prototype, arranged on a lab bench, would hardly be classified as small, the researchers said their system can one day be miniaturized to fit in a handheld video camera or an aerial drone.

In both simulations and real-world experiments, the team used the system to successfully identify airplanes, automobiles, cats, dogs and more within natural image settings.

“Some future version of our system would be especially useful in rapid decision-making applications, like autonomous vehicles,” Wetzstein said.

In addition to shrinking the prototype, Wetzstein, Chang and colleagues at the Stanford Computational Imaging Lab are now looking at ways to make the optical component do even more of the preprocessing. Eventually, their smaller, faster technology could replace the trunk-size computers that now help cars, drones and other technologies learn to recognize the world around them.

Editor’s Note: This article was reprinted from Stanford News.

Comments

  1. Paulo Patullo says

    September 19, 2018 at 7:40 pm

    In an area where every picosecond counts, such time improvement leaves extremely valuable time slot for other safety processing.

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

TransEnterix submits first machine vision system for robotic surgery to the FDA
TransEnterix machine vision system for robotic surgery receives CE Mark
DreamVu PAL 3D vision system
DreamVu launches PAL, PAL Mini 360-degree 3D vision systems
Teledyne acquiring FLIR for $8B in major merger
Immervision works to widen field of view for autonomous vehicle lidar
Immervision works to widen field of view for autonomous vehicles and drones

Robotics Year in Review

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Teradyne’s acquisition strategy & the future of cobot

The Robot Report Podcast · Teradyne's acquisition strategy & the future of cobots

Sponsored Content

  • Doosan Robotics: Driving Innovation and Growth in Cobots
  • FORT Robotics Podcast: FORT Robotics on how to keep humans safe and in control of robots
  • Pallet Detection Systems Help Automated Forklifts Modernize Warehouse Operations
  • IES Servo Control Gripper
  • How to cut the cost of manufacturing

Tweets by RoboticTips

The Robot Report
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast