The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Soft exosuit automatically adapts to walking needs

By Brianna Wessling | November 29, 2021

SEAS exosuit

Researchers used a portable ultrasound system strapped to the calves of participants to image their muscles. | Photo Credit: Harvard Biodesign Lab/Harvard SEAS

The way we walk constantly changes. We change speed and adjust to inclines without even thinking about it. This variability is what makes walking difficult to recreate with exoskeletons. But researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have developed an approach that automatically adjusts a soft exoskeleton based on how the wearer is walking.

Typically, customizing exoskeletons to the way someone walks requires hours of manual or automatic tuning. This process can be challenging for a healthy person, and sometimes nearly impossible for older adults or clinical patients.

SEAS researchers are taking a unique approach to developing their exoskeleton. Instead of focusing on the dynamic movements of the limbs of the wearer, they created a muscle-based assistance strategy.

With this strategy, a portable ultrasound system takes ultrasound measurements of the calf muscles. These measurements estimate the amount of force produced by those muscles. Using these measurements, researchers develop a personalized assistance profile. The exosuit then automatically prescribes the amount of assistance needed for different walking speeds and slopes. The exosuit provides lower assistance force to help someone walk.

“We used ultrasound to look under the skin and directly measured what the user’s muscles were doing during several walking tasks,” said Richard Nuckols, a postdoctoral research associate at SEAS and co-first author of the paper. “Our muscles and tendons have compliance which means there is not necessarily a direct mapping between the movement of the limbs and that of the underlying muscles driving their motion.”

What sets this method apart from previous ones is the exoskeleton’s ability to automatically determine the assistance a person needs for different walking speeds and slopes. The exosuit only requires a few seconds of walking to capture the muscle’s profile.

This exosuit can adjust quickly to real-world conditions, according to the researchers. When researchers measured the metabolic energy used with and without the suit, they found that the suit significantly reduced the amount of metabolic energy used.

The research is a collaboration between the Harvard Biorobotics Lab and the Harvard Biodesign Lab run by Conor J. Walsh, the Paul A. Maeder Professor of Engineering and Applied Sciences at SEAS. SEAS researchers plan to move forward by testing how the system does with constant real-time adjustments.

SEAS’ full research can be found here.

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

The Northeastern team that won the MassRobotics Form & Function Challenge.
Northeastern soft robotic arm wins MassRobotics Form & Function Challenge at Robotics Summit
A FANUC robot working in car manufacturing.
U.S. automotive industry increased robot installations by 10% in 2024
A robot arm with a two-fingered gripper picking up a cup next to a sink.
Cornell University teaches robots new tasks from how-to videos in just 30 minutes
A comparison shot shows the relative size of the current RoboBee platform with a penny, a previous iteration of the RoboBee, and a crane fly.
Harvard equips its RoboBee with crane fly-inspired landing gear

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe