The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

SemExp uses common sense to help robots navigate homes

By Byron Spice | July 20, 2020

SemExp navigation system

SemExp, or Goal-Oriented Semantic Exploration, uses machine learning to train a robot to recognize objects and understand where in a home they are likely to be found.

A robot travelling from point A to point B is more efficient if it understands that point A is the living room couch and point B is a refrigerator, even if it’s in an unfamiliar place. That’s the common sense idea behind a “semantic” navigation system developed by Carnegie Mellon University and Facebook AI Research (FAIR).

That navigation system, called SemExp, last month won the Habitat ObjectNav Challenge during the virtual Computer Vision and Pattern Recognition conference, edging a team from Samsung Research China. It was the second consecutive first-place finish for the CMU team in the annual challenge.

SemExp, or Goal-Oriented Semantic Exploration, uses machine learning to train a robot to recognize objects – knowing the difference between a kitchen table and an end table, for instance – and to understand where in a home such objects are likely to be found. This enables the system to think strategically about how to search for something, said Devendra S. Chaplot, a Ph.D. student in CMU’s Machine Learning Department.

“Common sense says that if you’re looking for a refrigerator, you’d better go to the kitchen,” Chaplot said. Classical robotic navigation systems, by contrast, explore a space by building a map showing obstacles. The robot eventually gets to where it needs to go, but the route can be circuitous.

Previous attempts to use machine learning to train semantic navigation systems have been hampered because they tend to memorize objects and their locations in specific environments. Not only are these environments complex, but the system often has difficulty generalizing what it has learned to different environments.

Chaplot – working with FAIR’s Dhiraj Gandhi, along with Abhinav Gupta, associate professor in the Robotics Institute, and Ruslan Salakhutdinov, professor in the Machine Learning Department – sidestepped that problem by making SemExp a modular system.

Related: Semantic SLAM navigation targets last-mile delivery robots

The system uses its semantic insights to determine the best places to look for a specific object, Chaplot said. “Once you decide where to go, you can just use classical planning to get you there.”

This modular approach turns out to be efficient in several ways. The learning process can concentrate on relationships between objects and room layouts, rather than also learning route planning. The semantic reasoning determines the most efficient search strategy. Finally, classical navigation planning gets the robot where it needs to go as quickly as possible.

Semantic navigation ultimately will make it easier for people to interact with robots, enabling them to simply tell the robot to fetch an item in a particular place, or give it directions such as “go to the second door on the left.”


Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

myoshirt
ETH Zurich develops wearable muscles
csail simulation
MIT CSAIL releases open-source simulator for autonomous vehicles
A3 robots
Robot sales hit record high in first quarter of 2022
tiny robot on penny
Researchers create walking robot half a millimeter wide

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Brian Gerkey from Open Robotics discusses the development of ROS
See More >

Sponsored Content

  • Magnetic encoders support the stabilization control of a self-balancing two-wheeled robotic vehicle
  • How to best choose your AGV’s Wheel Drive provider
  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail