The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Rubble-roving robots use hands and feet to navigate treacherous terrain

By Dan Newman | August 16, 2021

By Dan Newman, University of Michigan

Humans are adept at using our hands to keep our balance, whether by grabbing a railing as we climb stairs, walking with help from a cane, or gripping a strap on the subway. Now, University of Michigan researchers have enabled humanoid robots to use their hands in a similar way, so the robots can better travel across rough terrain, such as disaster areas or construction sites.

“In a collapsed building or on very rough terrain, a robot won’t always be able to balance itself and move forward with just its feet,” said Dmitry Berenson, professor of electrical and computer engineering and core faculty in the Robotics Institute.

“You need new algorithms to figure out where to put both feet and hands. You need to coordinate all these limbs together to maintain stability, and what that boils down to is a very difficult problem.”

The research enables robots to determine how difficult the terrain is before calculating a successful path forward, which might include bracing on the wall with one or two hands while taking the next step forward.

“First, we used machine learning to train the robot on the different ways it can place its hands and feet to maintain balance and make progress,” said Yu-Chi Lin, recent Robotics PhD graduate and software engineer at Nuro, Inc. “Then, when placed in a new, complex environment, the robot can use what it learned to determine how traversable a path is, allowing it to find a path to the goal much faster.”

However, even when using this traversability estimate, it is still time-consuming to plan a long path using traditional planning algorithms.

“If we tried to find all the hand and foot locations over a long path, it would take a very long time,” said Berenson.

So, the team used a “divide-and-conquer” approach, splitting a path into tough-to-traverse sections, where they can apply their learning-based method, and easier-to-traverse sections, where a simpler path planning method works better.

“That sounds simple, but it’s really hard to know how to split up that problem correctly, and which planning method to use for each segment,” said Lin. With their new method of path segmentation, however, they are able to not only break up paths and match them with the best planning method, but do so over long distances.

One limiting factor of their approach is that it requires a geometric model of the entire environment. However, this could be obtained by a flying drone which scouts ahead of the robot.

In a virtual experiment with a humanoid robot in a corridor of rubble, the team’s method outperformed previous methods in both success and total time to plan–important when quick action is needed in disaster scenarios. Specifically, over 50 trials, their method reached the goal 84 percent of the time compared to 26 percent for the basic path planner, and took just over two minutes to plan compared to over three minutes for the basic path planner.

The team also showcased their method’s ability to work on a real world, mobile manipulator —a wheeled robot with a torso and two arms. With the base of the robot placed on a steep ramp, it had to use its hands to brace itself on an uneven surface as it moved. The robot utilized the team’s method to plan a path in just over a tenth of a second, compared to over 3.5 seconds with the basic path planner.

In future work, the team hopes to incorporate dynamically-stable motion, similar to the natural movement of humans and animals, which would free the robot from having to be constantly in balance, and could improve its speed of movement.

The paper describing the work, “Long-horizon humanoid navigation planning using traversability estimates and previous experience,” was published in Autonomous Robots.

Funding for the research was provided by the Office of Naval Research (N00014-17-1-2050).

Editors note: This story was originally published by the University of Michigan.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

The Tready mobile robot shown here uses HEBI Robotics' modular approach to actuation.
HEBI Robotics gets SBIR grant to develop hardware for hazardous environments
From left: Pepper, Nao, and Plato from Aldebaran.
Aldebaran, maker of Pepper and Nao robots, put in receivership
team members from the Team TUM gather under canopy to watch their vehicle run the track.
Indy Autonomous Challenge coming to California
Persona AI CEO Nicholas Radford is this week's guest on The Robot Report Podcast.
First robot boxing match; Persona AI developing industrial humanoid

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe