The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Researchers use imitation learning to train surgical robots

By The Robot Report Staff | November 11, 2024

A robot, trained for the first time by watching videos of seasoned surgeons, executed the same surgical procedures as skillfully as the human doctors.

The successful use of imitation learning to train surgical robots eliminates the need to program robots with each individual move required during a medical procedure and brings the field of robotic surgery closer to true autonomy, where robots could perform complex surgeries without human help.

“It’s really magical to have this model and all we do is feed it camera input and it can predict the robotic movements needed for surgery,” said senior author Axel Krieger, an assistant professor in Johns Hopkins University’s Department of Mechanical Engineering. “We believe this marks a significant step forward toward a new frontier in medical robotics.”

The team, which included Stanford University researchers, used imitation learning to train Intuitive’s da Vinci Surgical System robot to perform three fundamental tasks required in surgical procedures: manipulating a needle, lifting body tissue, and suturing. In each case, the robot trained on the team’s model performed the same surgical procedures as skillfully as human doctors.

The model combined imitation learning with the same machine learning architecture that underpins ChatGPT. However, where ChatGPT works with words and text, this model speaks “robot” with kinematics, a language that breaks down the angles of robotic motion into math.

The researchers fed their model hundreds of videos recorded from wrist cameras placed on the arms of da Vinci robots during surgical procedures. These videos, recorded by surgeons all over the world, are used for post-operative analysis and then archived. Nearly 7,000 da Vinci robots are used worldwide, and more than 50,000 surgeons are trained on the system, creating a large archive of data for robots to “imitate.”

a surgical robot suturing a patient after a procedure.

The model combined imitation learning with the same machine learning architecture that underpins ChatGPT. | Credit: Johns Hopkins University

While the da Vinci system is widely used, researchers say it’s notoriously imprecise. But the team found a way to make the flawed input work. The key was training the model to perform relative movements rather than absolute actions, which are inaccurate.

“All we need is image input and then this AI system finds the right action,” said lead author Ji Woong “Brian” Kim, a postdoctoral researcher at Johns Hopkins. “We find that even with a few hundred demos, the model is able to learn the procedure and generalize new environments it hasn’t encountered.”

Added Krieger: “The model is so good learning things we haven’t taught it. Like if it drops the needle, it will automatically pick it up and continue. This isn’t something I taught it do.”

The model could be used to quickly train surgical robots to perform any type of surgical procedure, the researchers said. The team is now using imitation learning to train a robot to perform not just small surgical tasks but a full surgery.


SITE AD for the 2026 Robotics Summit save the date.

Before this advancement, programming a robot to perform even a simple aspect of a surgery required hand-coding every step. Someone might spend a decade trying to model suturing, Krieger said. And that’s suturing for just one type of surgery.

“It’s very limiting,” Krieger said. “What is new here is we only have to collect imitation learning of different procedures, and we can train a robot to learn it in a couple days. It allows us to accelerate to the goal of autonomy while reducing medical errors and achieving more accurate surgery.”

Authors from Johns Hopkins include PhD student Samuel Schmidgall; Associate Research Engineer Anton Deguet; and Associate Professor of Mechanical Engineering Marin Kobilarov. Stanford University authors are PhD student Tony Z. Zhao and Assistant Professor Chelsea Finn.

Editor’s Note: This article was republished from Johns Hopkins University.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

An illustration of two Franka arms picking items in simulation.
PickNik expands support for Franka Research 3 robot on MoveIt Pro
A small drone flying into fog in a dark room.
Bats inspire WPI researchers to develop drones using echolocation
Three drones work together to carry a package using a new algorithm developed at TU Delft.
TU Delft algorithm to enables drones to work together to transport heavy payloads
Mr Tung Meng Fai, Executive Director, National Robotics Programme (NRP); Professor Tan Chorh Chuan, Chairman, Agency for Science, Technology and Research (A*STAR); Ms Vanessa Yamzon Orsi, CEO, Open Source Robotics Foundation; and Dr Wang Wei, Deputy Executive Director (R&D) at A*STAR SIMTech and A*STAR ARTC, attended ROSCon on 28 October 2025.
Singapore’s National Robotics Programme reveals initiatives to advance robot adoption

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Supporting the future of medical robotics with smarter motor solutions
  • YUAN Unveils Next-Gen AI Robotics Powered by NVIDIA for Land, Sea & Air
  • ASMPT chooses Renishaw for high-quality motion control
  • Revolutionizing Manufacturing with Smart Factories
  • How to Set Up a Planetary Gear Motion with SOLIDWORKS
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe