The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast

Researchers develop powerful optical neuromorphic processor

By The Robot Report Staff | January 8, 2021

Listen to this article
Voiced by Amazon Polly
neuromorphic chip

Dr. Xingyuan Xu with the integrated optical microcomb chip, which forms the core part of the optical neuromorphic processor. | Credit: Swinburne University

An international team of researchers, led by Swinburne University of Technology, demonstrated what it claimed is the world’s fastest and most powerful optical neuromorphic processor for artificial intelligence (AI). It operates faster than 10 trillion operations per second (TeraOPs/s) and is capable of processing ultra-large scale data.

The researchers said this breakthrough represents an enormous leap forward for neural networks and neuromorphic processing in general. It could benefit autonomous vehicles and data-intensive machine learning tasks such as computer vision.

Artificial neural networks can ‘learn’ and perform complex operations with wide applications. Inspired by the biological structure of the brain’s visual cortex system, artificial neural networks extract key features of raw data to predict properties and behaviour with unprecedented accuracy and simplicity.

The team was able to dramatically accelerate the computing speed and processing power of the optical neural networks. The team demonstrated an optical neuromorphic processor operating more than 1000 times faster than any previous processor, with the system also processing ultra-large scale images – enough to achieve full facial image recognition. Here is the researchers’ full paper, “11 TOPS photonic convolutional accelerator for optical neural networks” (PDF).

“This breakthrough was achieved with ‘optical micro-combs’, as was our world-record internet data speed reported in May 2020,” said Professor Moss, Director of Swinburne’s Optical Sciences Centre.

While state-of-the-art electronic processors such as the Google TPU can operate beyond 100 TeraOPs/s, this is done with tens of thousands of parallel processors, according to the researchers. In contrast, the optical system demonstrated by the team uses a single processor and was achieved using a new technique of simultaneously interleaving the data in time, wavelength and spatial dimensions through an integrated micro-comb source.

Operating principle of the photonic convolutional accelerator. | Credit: Swinburne University

Micro-combs are relatively new devices that act like a rainbow made up of hundreds of high-quality infrared lasers on a single chip. They are much faster, smaller, lighter and cheaper than any other optical source.

“In the 10 years since I co-invented them, integrated micro-comb chips have become enormously important and it is truly exciting to see them enabling these huge advances in information communication and processing. Micro-combs offer enormous promise for us to meet the world’s insatiable need for information,” says Professor Moss.

“This processor can serve as a universal ultrahigh bandwidth front end for any neuromorphic hardware —optical or electronic based — bringing massive-data machine learning for real-time ultra-high bandwidth data within reach,” said co-lead author of the study, Dr Xu, Swinburne alum and postdoctoral fellow with the Electrical and Computer Systems Engineering Department at Monash University.

“We’re currently getting a sneak-peak of how the processors of the future will look. It’s really showing us how dramatically we can scale the power of our processors through the innovative use of microcombs,” Dr Xu explained.

RMIT’s Professor Mitchell adds, “This technology is applicable to all forms of processing and communications – it will have a huge impact. Long term we hope to realise fully integrated systems on a chip, greatly reducing cost and energy consumption”.

“Convolutional neural networks have been central to the artificial intelligence revolution, but existing silicon technology increasingly presents a bottleneck in processing speed and energy efficiency,” said Professor Damien Hicks, from Swinburne and the Walter and Elizabeth Hall Institute.

He added, “This breakthrough shows how a new optical technology makes such networks faster and more efficient and is a profound demonstration of the benefits of cross-disciplinary thinking, in having the inspiration and courage to take an idea from one field and using it to solve a fundamental problem in another.”

Editor’s Note: This article was republished from Swinburne University of Technology.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Isaac Gym is NVIDIA's reinforcement learning accelerator for robotics
Isaac Gym is NVIDIA’s reinforcement learning accelerator for robotics
Phoenix Instinct team wins $1M first prize in Toyota Mobility Unlimited Challenge
Phoenix Instinct team wins $1M first prize in Toyota Mobility Unlimited Challenge
Akasha Imaging closes Series A to improve robot vision in manufacturing
Akasha Imaging closes Series A to improve robot vision in manufacturing
Mech-Mind Robotics raises Series B+ funding for smarter industrial robots
Mech-Mind Robotics raises Series B+ funding for smarter industrial robots

Robotics Year in Review

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Teradyne’s acquisition strategy & the future of cobot

The Robot Report Podcast · Teradyne's acquisition strategy & the future of cobots

Sponsored Content

  • Doosan Robotics: Driving Innovation and Growth in Cobots
  • FORT Robotics Podcast: FORT Robotics on how to keep humans safe and in control of robots
  • Pallet Detection Systems Help Automated Forklifts Modernize Warehouse Operations
  • IES Servo Control Gripper
  • How to cut the cost of manufacturing

Tweets by RoboticTips

The Robot Report
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast