The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Researchers create new learning model for prosthetic limbs

By Brianna Wessling | February 13, 2022

prosthetic

A schematic and physical diagram of the location of electrodes. Below, a prosthetic hand robot used by the team.

Researchers at Shenyang University of Technology and the University of Electro-Communications in Tokyo are trying to figure out how to make prosthetic hands respond to arm movements.

For the last decade, scientists have been trying to figure out how to use surface electromyography (EMG) signals to control prosthetic limbs. EMG signals are electrical signals that cause our muscles to contract. They can be recorded by inserting electrode needles into the muscle. Surface EMGs are recorded with electrodes placed on the skin above muscles.

Surface EMGs could be used to allow prosthetic limbs to respond faster, and move more naturally. However, interruptions, such as a shift in the electrodes, can make it hard for a device to recognize those signals. One way to overcome this is by doing surface EMG signal training. The training can be a long and at times difficult process for amputees.

So, many researchers have turned to machine learning. With machine learning, a prosthetic limb could learn the difference between muscle movements that indicate gestures, and movements of electrodes.

The authors of a study published in Cyborg and Bionic Systems developed a unique machine learning method that combined a convolutional neural network (CNN) and a long short-term memory (LSTM) artificial neural network. They landed on these two methods because of their complementing strengths.

A CNN does well at picking up on the spatial dimensions of surface EMG signals and understanding how they relate to hand gestures. It struggles with time. Gestures take place over time, but a CNN ignores time information in continuous muscle contractions. Typically, CNNs are used for image recognition.

LSTM is usually used for handwriting and speech recognition. This neural network is good at processing, classifying and making predictions based on sequences of data over time. They’re not very practical for prosthetics, however, because the size of the computational model would be too costly.

The research team created a hybrid model, combining the spacial awareness of CNN and temporal awareness of LSTM. In the end, they had reduced the size of the deep learning model, and still maintained high accuracy and a strong resistance to interference.

The system was tested on ten non-amputee subjects with a series of 16 different hand gestures. The system had a recognition accuracy of over 80%. It did well with most gestures, like holding a phone or pen, but struggled with pinching using its middle and index fingers. Overall, according to the team, the results outpaced traditional learning methods.

The end goal for the researchers is to develop a flexible and reliable prosthetic hand. Their next steps are to further improve accuracy of the system, and figure out why it struggled with the pinching gestures.

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

New enabling technologies from Automate 2025
Soon-to-be CEO Dave Rosa.
Intuitive Surgical is making a CEO change
A lot full of Waymo self driving vehicles.
Waymo updates 1,200+ robotaxis in software recall
Former Universal Robots president Kim Povlsen was named CEO of quantum technology leader Bluefors.
Former UR president Povlsen joins quantum technology leader

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe