The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Report: New shear-force detecting skin could improve robot sensitivity

By Fink Densford | October 17, 2017

[Credit: UCLA Engineering]

A new flexible, sensing “skin” could allow robots to more accurately sense when objects are slipping out of its grasp, according to a new report.

Researchers from the University of Washington and UCLA say they ahve developed such a flexible sensor skin that can be stretched over any part of a robot’s body to allow it to gain information on shear forces and vibration that could help it more accurately grasp and manipulate objects.

A report on the skin was recently published in the journal Sensors and Actuators A: Physical.

The skin reportedly mimics the way a human finger feels tension and compression as it strokes a surface and interprets different textures, according to the report, and measures tactile information with precision close to that of skin.

“Robotic and prosthetic hands are really based on visual cues right now — such as, ‘Can I see my hand wrapped around this object?’ or ‘Is it touching this wire?’ But that’s obviously incomplete information. If a robot is going to dismantle an improvised explosive device, it needs to know whether its hand is sliding along a wire or pulling on it. To hold on to a medical instrument, it needs to know if the object is slipping. This all requires the ability to sense shear force, which no other sensor skin has been able to do well,” UW mechanical and chemical engineering professor and senior author Jonathan Posner said in a press release.

Traditional tactile skins have not provided a full range of sensory information, and often the ability of fully instrumented fingers on robots to detect touch is limited to just that appendage, according to the report.

“Traditionally, tactile sensor designs have focused on sensing individual modalities: normal forces, shear forces or vibration exclusively. However, dexterous manipulation is a dynamic process that requires a multimodal approach. The fact that our latest skin prototype incorporates all three modalities creates many new possibilities for machine learning-based approaches for advancing robot capabilities,” UCLA mechanical & aerospace engineering associate professor and co-author Veronica Santos said in a prepared statement.

The skin was manufactured at UW’s Washington Nanofabrication Facility and is made from the same silicone rubber used in swimming goggles. The material can be embedded with conductive liquid metal that can stretch with the surface without the fatigue associated with solid wires.

As the filled channels in the ‘skin’ changes in geometry, the amount of electricity flowing through it is altered and can be measured to correlate with shear forces and vibrations.

“It’s really following the cues of human biology. Our electronic skin bulges to one side just like the human finger does and the sensors that measure the shear forces are physically located where the nailbed would be, which results in a sensor that performs with similar performance to human fingers,” lead author Jianzhu Yin said in prepared remarks.

The skin has been shown to be sensitive enough for light touch applications including opening a door, interacting with a phone, shaking hands, picking up packages, handling objects and can detect vibrations at 800 times per second, according to the report.

“By mimicking human physiology in a flexible electronic skin, we have achieved a level of sensitivity and precision that’s consistent with human hands, which is an important breakthrough. The sense of touch is critical for both prosthetic and robotic applications, and that’s what we’re ultimately creating,” Posner said in a press release.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
The Northeastern team that won the MassRobotics Form & Function Challenge.
Northeastern soft robotic arm wins MassRobotics Form & Function Challenge at Robotics Summit
A FANUC robot working in car manufacturing.
U.S. automotive industry increased robot installations by 10% in 2024
A robot arm with a two-fingered gripper picking up a cup next to a sink.
Cornell University teaches robots new tasks from how-to videos in just 30 minutes

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe