The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Reconfigurable soft actuator quickly transforms to multiple shapes

By The Robot Report Staff | February 5, 2019

Ronfigurable soft actuator transforms

A soft actuator made up of an initially flat thin circular sheet of elastomer with embedded electrodes can morph into a saddle shape. (Image courtesy of the Clarke Lab/Harvard SEAS)

Mechanical systems, such as engines and motors, rely on two principal types of motions of stiff components: linear motion, which involves an object moving from one point to another in a straight line; and rotational motion, which involves an object rotating on an axis.

Nature has developed far more sophisticated forms of movement — or actuation—that can perform complex functions more directly and with soft components. For example, our eyes can change focal point by simply contracting soft muscles to change the shape of the cornea. In contrast, cameras focus by moving solid lenses along a line, either manually or by an autofocus.

But what if we could mimic shape changes and movements found in nature with a soft actuator?

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a method to change the shape of a flat sheet of elastomer, using actuation that is fast, reversible, controllable by an applied voltage, and reconfigurable to different shapes.

The soft actuator research was published in Nature Communications.

Soft actuator changes shape depending on which electrodes are turned on or off.

An initially flat thin circular sheet of elastomer morphs into a saddle shape based on which sets of electrodes are turned on or off (Image courtesy of the Clarke Lab/Harvard SEAS)

We see this work as the first step in the development of a soft, shape shifting material that changes shape according to electrical control signals from a computer,” said David Clarke, the Extended Tarr Family Professor of Materials at SEAS and senior author of the paper. “This is akin to the very first steps taken in the 1950’s to create integrated circuits from silicon, replacing circuits made of discrete, individual components. Just as those integrated circuits were primitive compared to the capabilities of today’s electronics, our devices have a simple but integrated three-dimensional architecture of electrical conductors and dielectrics, and demonstrate the elements of programmable reconfiguration, to create large and reversible shape changes.”

The reconfigurable elastomer sheet is made up of multiple layers. Carbon nanotube-based electrodes of different shapes are incorporated between each layer.

When a voltage is applied to these electrodes, a spatially varying electric field is created inside the elastomer sheet that produces uneven changes in the material geometry, allowing the soft actuator to morph into a controllable three-dimensional shape.

Different sets of electrodes can be switched on independently, enabling different shapes based on which sets of electrodes are on and which ones are off.

“In addition to being reconfigurable and reversible, these shape-morphing actuations have a power density similar to that of natural muscles,” said Ehsan Hajiesmaili, first author of the paper and graduate student at SEAS. “This functionality could transform the way that mechanical devices work. There are examples of current devices that could make use of more sophisticated deformations to function more efficiently, such as optical mirrors and lenses. More importantly, this actuation method opens the door to novel devices that deemed too complicated to pursue due to the complex deformations required, such as a shape-morphing airfoil.”

In this research, the team also predicted the soft actuator shapes, given the design of the electrode arrangement and applied voltage. Next, the researchers aim to tackle the inverse problem: given a desired actuation shape, what is the design of the electrodes and the required voltage that will cause it?

Harvard’s Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

This research was supported by Harvard MRSEC through the National Science Foundation.

Editor’s Note: This article by Leah Burrows was republished with permission of Harvard University.

Comments

  1. Anurag Singh says

    September 24, 2020 at 2:22 pm

    Can we send me a sample of this soft actuator or tell me exactly from what elements it’s electrode and elastomer is made?

    Reply

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Kawasaki had one of the largest robots at Automate 2025.
10 robotics trends spotted at Automate 2025
New enabling technologies from Automate 2025
The humanoid robot market is about to experience a boom, with projections indicating a substantial and sustained increase over the next decade, says Freudenberg.
Humanoid robots can benefit from high-performance seals, says Freudenberg
Elmo Motion Control will demonstrate the Titanium Maestro motion controller at the Robotics Summit & Expo.
Elmo Motion Control presents technology innovations at upcoming shows

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe