The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

Popup AGV robot from NASA’s Jet Propulsion Laboratory may catch rover ride

By Lisa Eitel | March 21, 2017

The next AGV robot rovers to explore another planet might bring along a scout. The Pop-Up Flat Folding Explorer Robot (PUFFER) in development at NASA’s Jet Propulsion Laboratory in Pasadena, California, was inspired by origami. Its lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can’t fit.

Over the past year and a half, PUFFER has been tested in a range of rugged terrains, from the Mojave Desert in California to the snowy hills of Antarctica. The idea is to explore areas that might be too risky for a full-fledged rover to go, such as steep slopes or behind sand dunes.

It can skitter up 45° slopes, investigate overhangs and even drop into pits or craters. PUFFER is meant to be the hardy assistant to a larger robot companion: several of the microbots can be flattened like cards and stacked one on top of the other. Then, they can be flicked out, popped up and begin exploring.

“They can do parallel science with a rover, so you can increase the amount you’re doing in a day,” said Jaakko Karras, PUFFER’s project manager at JPL. “We can see these being used in hard-to-reach locations — squeezing under ledges, for example.”

PUFFER’s creators at JPL hope to see the bot rolling across the sands of Mars someday. But they imagine it could be used by scientists right here on Earth, as well. Carolyn Parcheta, a JPL scientist who uses robots to explore volcanoes, offered guidance on PUFFER’s science instruments. She said the use of backpack-ready bots has enormous potential for fields like geology.

“Having something that’s as portable as a compass or a rock hammer means you can do science on the fly,” she said.

Paper prototype for folding PUFFER bot

PUFFER’s body was originated by Karras, who was experimenting with origami designs. While he was a grad student at UC Berkeley’s Biomimetic Millisystem Lab, he worked on developing robotics based on natural forms, like animal and insect movement.

The PUFFER team substituted paper with a printed circuit board — the same thing inside of your smartphone. That allowed them to incorporate more electronics, including control and rudimentary instruments.

“The circuit board includes both the electronics and the body, which allows it to be a lot more compact,” said Christine Fuller, a JPL mechanical engineer who worked on PUFFER’s structure and tested it for reliability. “There are no mounting fasteners or other parts to deal with. Everything is integrated to begin with.”

JPL’s Kalind Carpenter, who specializes in robotic mobility, made four wheels for the folding bot on a 3-D printer. Their first prototype was little more than rolling origami, but it quickly grew more complex.

Pop-Up Flat Folding Explorer Robot (PUFFER) was inspired by an origami design. This little robot could be used as a scout for larger rovers, going places that would be risky or hard to reach. Image courtesy NASA/JPL-Caltech

The wheels evolved, going from four to two, and gaining treads that allow it to climb inclines. They can also be folded over the main body, allowing PUFFER to crawl. A tail was added for stabilization. Solar panels on PUFFER’s belly allow it to flip over and recharge in the sun.

The team partnered with the Biomimetic Millisystems Lab, which developed a “skittering walk” that keeps the bot inching forward, one wheel at a time, without slipping. A company called Distant Focus Corporation, Champaign, Illinois, provided a high-resolution microimager sensitive enough to see objects that are just 10 microns in size — a fraction of a diameter of a human hair.

Before long, PUFFER was ready for a test drive.

From the Mojave to Mars with the foldup robot

Once they had a functional prototype, the JPL team took PUFFER out for field testing. In Rainbow Basin, California, the bot clambered over sedimentary rock slopes and under overhangs.

That terrain serves as an analog to Martian landscapes. On Mars, overhangs could be sheltering organic molecules from harmful radiation. Darkly colored Martian slopes, which are of interest to scientists, are another potential target.

On a level dirt path, PUFFER can drive about 2,050 feet (625 meters) on one battery charge. That could fluctuate a bit depending on how much any onboard instruments are used.

Besides desert conditions, PUFFER has been outfitted for snow. Carpenter designed bigger wheels and a flat fishtail to help it traverse wintry terrain. So far, it’s been tested at a ski resort in Grand Junction, Colorado; Big Bear, California; and on Mt. Erebus, an active volcano in Antarctica.

One of PUFFER’s more recent field tests wasn’t particularly challenging, but can still be counted as a success: the Consumer Electronics Show. On a convention center floor in Las Vegas, it drew crowds of delighted technology fans.

PUFFER was outfitted for field testing in snow during a recent trip to Antarctica’s Mt. Erebus. Image courtesy Dylan Taylor

PUFFER fitted with instrumentation

Now the JPL team is looking at adding a number of instruments that would allow it to sample water for organic material, or a spectrometer to study the chemical makeup of its environment.

It’s also getting bigger. Future designs might be as large as a breadbox, sacrificing its microbot size for added robustness.

Most exciting of all would be making PUFFER smarter. Right now, it runs off Bluetooth and can be controlled remotely. But Carpenter said they’d like to add autonomy, allowing a swarm of PUFFERs to conduct science as a mobile team.

“If Curiosity had a stack of PUFFERs on board, each of them could go to separate spots, and the rover would just go to the most interesting one,” Carpenter said.

The team is hopeful PUFFER could end up on a future planetary mission. It already includes many Mars-compatible materials in its construction, including heritage technology from the Viking, Pathfinder and Phoenix missions.

For example, PUFFER’s body is wrapped in Nomex, a strong textile used in the air bags that cushioned NASA’s Spirit and Opportunity rovers when they touched down on Mars. Nomex is also used by firefighters to repel heat, meaning PUFFER could survive punishing high temperatures. A company called Pioneer Circuits, Santa Ana, California, helped integrate the Nomex into the folding circuit boards.

“Small robotic explorers like PUFFER could change the way we do science on Mars,” Karras said. “Like Sojourner before it, we think it’s an exciting advance in robotic design.”

The PUFFER project is a Game Changing Development (GCD) program. The project is managed by JPL. The GCD program investigates ideas and approaches that could solve significant technological problems and revolutionize future space endeavors. GCD is part of NASA’s Space Technology Mission Directorate. For more information, visit gameon.nasa.gov.

About The Author

Lisa Eitel

Lisa Eitel has a B.S. in Mechanical Engineering and 17 years of experience as a technical writer. Her areas of focus include motors, drives, motion control, power transmission, robotics, linear motion, and sensing and feedback technologies.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Children with autism could benefit from USC assistive robot
Children with autism could benefit from USC assistive robot
DENSO awards Battle Creek student scholarships
DENSO Foundation awards nearly $1 million in grants
VBOTS announces new certified material developer program

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Anders Beck introduces the UR20; California bans autonomous tractors
See More >

Sponsored Content

  • Magnetic encoders support the stabilization control of a self-balancing two-wheeled robotic vehicle
  • How to best choose your AGV’s Wheel Drive provider
  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail