The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

NASA Mars Perseverance completes first Autonav drive

By Mike Oitzman | July 7, 2021

a screenshot of a simulated naviation sequence for the mars perseverance roverNASA’s newest six-wheeled robot on Mars, the Perseverance rover, is beginning its epic journey across the Jezero crater floor seeking signs of ancient life. What makes that exciting for this mission is that Perseverance is equipped with the most powerful navigation software that’s ever been sent to another planet.

The distance between Mars and Earth doesn’t make it practical to drive the rover in real-time with a human driver. In fact, this has never been possible. All of the prior rovers also had to rely on autonomous driving to move across the planet.

However, the team at JPL has learned from each subsequent mission to Mars and as a result, the Perseverance rover is the most capable, auto navigating rover to ever be deployed. Armed with these new capabilities, the team expect Perseverance to take on more of the planning and obstacle avoidance onboard the rover. The result will be longer drives and more mileage driven throughout the mission lifetime.

The new powerful auto-navigation system is called AutoNav. It includes and enhanced system that makes 3D maps of the terrain ahead, identifies hazards, and plans a route around any obstacles without additional direction from controllers back on Earth.

“We have a capability called ‘thinking while driving,’” said Vandi Verma, a senior engineer, rover planner, and driver at NASA’s Jet Propulsion Laboratory in Southern California. “The rover is thinking about the autonomous drive while its wheels are turning.”

That capability, combined with other improvements, might enable Perseverance to hit a top speed of 393 feet (120 meters) per hour; its predecessor, Curiosity, equipped with an earlier version of AutoNav, covers about 66 feet (20 meters) per hour as it climbs Mount Sharp to the southeast.

“We sped up AutoNav by four or five times,” said Michael McHenry, the mobility domain lead and part of JPL’s team of rover planners. “We’re driving a lot farther in a lot less time than Curiosity demonstrated.”

As Perseverance begins its first science campaign on the floor of Jezero Crater, AutoNav will be a key feature in helping get the job done.

This crater once was a lake, when, billions of years ago, Mars was wetter than today, and Perseverance’s destination is a dried-out river delta at the crater’s edge. If life ever took hold on early Mars, signs of it might be found there. The rover will gather samples over some 9 miles (15 kilometers), then prep the samples for collection by a future mission that would take them back to Earth for analysis.

“We’re going to be able to get to places the scientists want to go much more quickly,” said Jennifer Trosper, who has worked on every one of NASA’s Martian rovers and is the Mars 2020 Perseverance rover project manager. “Now we are able to drive through these more complex terrains instead of going around them: It’s not something we’ve been able to do before.”

Perseverance can’t get by on AutoNav alone. The rover management team back on Earth at JPL remains critical in planning and driving Perseverance’s route. An entire team of specialists develops a navigation route along with planning the rover’s activity, whether it’s examining a geologically interesting feature on the way to its destination or, soon, taking samples.

Perseverance’s wheels were modified as well to help with just how swiftly those plans are executed: Along with being slightly greater in diameter and narrower than Curiosity’s wheels, they each feature 48 treads that look like slightly wavy lines, as opposed to Curiosity’s 24 chevron-pattern treads. The goals were to help with traction as well as durability.

“Curiosity couldn’t AutoNav because of the wheel-wear issue,” Trosper said. “Early in the mission, we experienced small, sharp, pointy rocks starting to put holes in the wheels, and our AutoNav didn’t avoid those.”

Higher clearance for Perseverance’s belly also enables the rover to roll safely over rougher ground – including good-size rocks. And Perseverance’s beefed-up auto-navigation capabilities include ENav, or enhanced navigation, an algorithm-and-software combination that allows more precise hazard detection.

Unlike its predecessors, Perseverance can employ one of its computers just for navigation on the surface; its main computer can devote itself to the many other tasks that keep the rover healthy and active.

Editor’s note: the original article on the NASA website can be found here.

You may also like:

  • Ingenuity Helicopter
    Hear the first sounds of Ingenuity flying on Mars
  • Ingenuity Helicopter
    Ingenuity Helicopter prepping for new demo phase on Mars
  • MOXIE Perseverance Rover
    How Perseverance Rover made oxygen on Mars

About The Author

Mike Oitzman

Mike Oitzman is Senior Editor of WTWH's Robotics Group and founder of the Mobile Robot Guide. Oitzman is a robotics industry veteran with 25-plus years of experience at various high-tech companies in the roles of marketing, sales and product management. Mike has a BS in Systems Engineering from UCSD and an MBA from Golden Gate University. He can be reached at moitzman@wtwhmedia.com.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

An ABB robot painting a car hood.
ABB deploys PixelPaint at Mercedes-Benz plant in Germany
Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
New enabling technologies from Automate 2025
Soon-to-be CEO Dave Rosa.
Intuitive Surgical is making a CEO change

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe