The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

MIT researchers help robots navigate uncertain environments

By Brianna Wessling | May 24, 2022

Listen to this article
Voiced by Amazon Polly
MIT CSAIL

MIT researchers have developed a trajectory-planning system for autonomous robots in unpredictable environments. | Source: Jose-Luis Olivares, MIT based on figure courtesy of the researchers

Researchers at MIT have developed a technique that can guide an autonomous robot through unknown environmental conditions. The technique helps a robot avoid obstacles without knowing the size, shape or location of what it could encounter. 

The research team hopes that its findings could help autonomous robots explore remote exoplanets where the robot, and the researchers who programmed it, don’t know what it will encounter on the planet. 

“Future robotic space missions need risk-aware autonomy to explore remote and extreme worlds for which only highly uncertain prior knowledge exists. In order to achieve this, trajectory-planning algorithms need to reason about uncertainties and deal with complex uncertain models and safety constraints,” co-lead author on the paper, Ashkan Jasour, said. 

MIT’s team couldn’t use typical trajectory planning methods that make assumptions about the vehicle, obstacles and environment. These methods are too simplistic for real-world settings. Instead, the team developed an algorithm that could determine the probability of observing different conditions or obstacles at different locations.

The algorithm determines the probability of these events based on a map or images the robot collects with its perception system. This approach formulates trajectory planning as a probabilistic optimization problem, a mathematical programming framework which lets the robot achieve planning objectives while avoiding obstacles. 

“Our challenge was how to reduce the size of the optimization and consider more practical constraints to make it work. Going from good theory to good application took a lot of effort,” Jasour said.

The researchers then used higher-order statistics of probability distributions of the uncertainties to convert the probabilistic optimization problem into a more straightforward deterministic optimization problem. This kind of problem could be solved efficiently with off-the-shelf solves. 

MIT’s team tested their technique with simulated navigation scenarios. In an underwater model where the algorithms needed to chart a course from an uncertain position, around obstacles and to a goal region. The system could safely reach the goal 99% of the time. Depending on how complex the environment is, the algorithm can plan a safe course in seconds or minutes. 

The next step for the team is to create more efficient processes that significantly reduces runtime. Co-authors on the paper include Jasour, former Computer Science and Artificial Intelligence Laboratory (CSAIL) research scientist who now works at NASA’s Jet Propulsion Lab, and Weiqiao Ham, a graduate student in the department of electrical engineering and computer science and member of CSAIL. Senior author on the paper was Brian Williams, a professor of aeronautics and astronautics and a member of CSAIL. 

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, and is a recent graduate from the University of Kansas. She can be reached at [email protected]

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

csail simulation
MIT CSAIL releases open-source simulator for autonomous vehicles
A3 robots
Robot sales hit record high in first quarter of 2022
tiny robot on penny
Researchers create walking robot half a millimeter wide
CMU ATV
Carnegie Mellon researchers gather data to train self-driving ATVs

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Anders Beck introduces the UR20; California bans autonomous tractors
See More >

Sponsored Content

  • Magnetic encoders support the stabilization control of a self-balancing two-wheeled robotic vehicle
  • How to best choose your AGV’s Wheel Drive provider
  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail