The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

MIT researchers help robots navigate uncertain environments

By Brianna Wessling | May 24, 2022

MIT CSAIL

MIT researchers have developed a trajectory-planning system for autonomous robots in unpredictable environments. | Source: Jose-Luis Olivares, MIT based on figure courtesy of the researchers

Researchers at MIT have developed a technique that can guide an autonomous robot through unknown environmental conditions. The technique helps a robot avoid obstacles without knowing the size, shape or location of what it could encounter. 

The research team hopes that its findings could help autonomous robots explore remote exoplanets where the robot, and the researchers who programmed it, don’t know what it will encounter on the planet. 

“Future robotic space missions need risk-aware autonomy to explore remote and extreme worlds for which only highly uncertain prior knowledge exists. In order to achieve this, trajectory-planning algorithms need to reason about uncertainties and deal with complex uncertain models and safety constraints,” co-lead author on the paper, Ashkan Jasour, said. 

MIT’s team couldn’t use typical trajectory planning methods that make assumptions about the vehicle, obstacles and environment. These methods are too simplistic for real-world settings. Instead, the team developed an algorithm that could determine the probability of observing different conditions or obstacles at different locations.

The algorithm determines the probability of these events based on a map or images the robot collects with its perception system. This approach formulates trajectory planning as a probabilistic optimization problem, a mathematical programming framework which lets the robot achieve planning objectives while avoiding obstacles. 

“Our challenge was how to reduce the size of the optimization and consider more practical constraints to make it work. Going from good theory to good application took a lot of effort,” Jasour said.

The researchers then used higher-order statistics of probability distributions of the uncertainties to convert the probabilistic optimization problem into a more straightforward deterministic optimization problem. This kind of problem could be solved efficiently with off-the-shelf solves. 

MIT’s team tested their technique with simulated navigation scenarios. In an underwater model where the algorithms needed to chart a course from an uncertain position, around obstacles and to a goal region. The system could safely reach the goal 99% of the time. Depending on how complex the environment is, the algorithm can plan a safe course in seconds or minutes. 

The next step for the team is to create more efficient processes that significantly reduces runtime. Co-authors on the paper include Jasour, former Computer Science and Artificial Intelligence Laboratory (CSAIL) research scientist who now works at NASA’s Jet Propulsion Lab, and Weiqiao Ham, a graduate student in the department of electrical engineering and computer science and member of CSAIL. Senior author on the paper was Brian Williams, a professor of aeronautics and astronautics and a member of CSAIL. 

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Six of multiple possible assistance scenarios with a prototype of a new robot being developed at MIT. Top row: getting into/out of a bathtub, bending down to reach objects, and catching a fall. Bottom row: powered sit-to-stand transition from a toilet, lifting a person from the floor, and walking assistance.
MIT engineers create elder assist robot E-BAR to prevent falls at home
The Northeastern team that won the MassRobotics Form & Function Challenge.
Northeastern soft robotic arm wins MassRobotics Form & Function Challenge at Robotics Summit
A FANUC robot working in car manufacturing.
U.S. automotive industry increased robot installations by 10% in 2024
A robot arm with a two-fingered gripper picking up a cup next to a sink.
Cornell University teaches robots new tasks from how-to videos in just 30 minutes

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe