The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

MIT researchers build swarms of assembling robots

By Brianna Wessling | November 29, 2022

Researchers at the Massachusetts Institute of Technology (MIT) Center for Bits and Atoms (CBA) have created assembling robots that are made up of the same components they use to build structures, and that can move independently in large numbers to make those structures. 

The latest research, published in Nature Communications Engineering, brings the researchers closer to creating a fully autonomous, self-replicating robot assembly system capable of assembling larger structures and planning its construction sequence. 

MIT’s CBA has worked for years on similar research, like studies that have demonstrated that objects like a deformable plane wing and a functional racing car can be assembled from small, lightweight, identical pieces. This team’s research builds on that previous work and indicates that these small subunits of robots can be used to accomplish large-scale assemblies quickly. 

The system developed by the team includes large, usable structures made from tiny, identical subunits called voxels, which are the volumetric equivalent of a 2D pixel. MIT’s voxels are more complex than the ones used in previous studies, as they can carry both power and data from one unit to the next. The structure is assembled by robots that are also made up of a string of voxels joined end-to-end. 

The voxel-robot can grab individual voxels using attachment points on its end. It then travels using inchworm-like movements to a position where it can attach the voxel to the structure and release it. But the robot doesn’t just decide how to build the structure, it can also decide to build more robots to help it build more quickly, or to make itself bigger so that it can travel across the structure faster.

This is where things get complicated for the researchers. While many papers have been published on robot path planning, that research doesn’t take into consideration a robot that could decide to make more robots. 

MIT

MIT’s research brings us closer to the possibility of building large structures from these assembly robots. | Source: MIT

The MIT team working on the research plans to develop stronger connectors for the robots in the future. Right now, the subunits aren’t strong enough to bear heavy loads, something that will be necessary for the many potential use cases they see for the technology. Some of those use cases include building 3D-printed houses and structures for coastal protection against erosion and sea level rise, as well as in the automotive and aviation industries. 

The research team included MIT-CBA doctoral student Amira Abdel, Rahman, professor and CBA Director Neil Gershenfeld, MIT-CBA student Benjamin Jenett and Christopher Cameron, a researcher at the U.S. Army Research Lab, among others. 

This kind of technology could be particularly helpful in space travel, where they could be sent to other planets to build structures before humans ever arrive. This is the vision of the COLMENA Project, or “hive” in English. This project involves sending a swarm of five self-organized robots, each weighing less than 60 grams and measuring just 12 centimeters in diameter, each equipped with a small solar panel.

The robots will autonomously navigate themselves to achieve electrical connectivity by joining their panels together to make a larger solar panel. The project will demonstrate how feasible it may be to build structures on planetary surfaces with robot swarms. During the mission, the robots will also take the first-ever lunar plasma temperature, electromagnetic and regolith particle size measurements. 

The project, led by Dr. Gustavo Medina Tanco from the National Autonomous University of Mexico (UNAM), will launch the five micro-robots to the moon this year on board the Peregrine Lunar Lander.

About The Author

Brianna Wessling

Brianna Wessling is an Associate Editor, Robotics, WTWH Media. She joined WTWH Media in November 2021, after graduating from the University of Kansas with degrees in Journalism and English. She covers a wide range of robotics topics, but specializes in women in robotics, autonomous vehicles, and space robotics.

She can be reached at bwessling@wtwhmedia.com

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Wireless charging nodes inside TVAC chamber.
Astrobotic, WiBotic test lunar wireless charging system
Headshot of Geoffrey Biggs and the podcast logo.
ICRA Recap; OSRF on ROS 1 Sunset
kilted kaiju logo in a green background.
Kilted Kaiju ROS 2 release details are available
Jorgen Pedersen, the ARM Institute's new CEO, will be at its annual member meeting, shown here.
ARM Institute appoints Jorgen Pedersen as new CEO

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe