The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

Mini Robot Cheetah Could Give Legged Robots Smoother Gait

By Steve Crowe | April 19, 2017

The University of Twente has built a mini robot cheetah in hope of replicating its movements to improve how legged robots move.

Robotic cheetahs aren’t new. Boston Dynamics, of course, made them famous in August 2012 when its Cheetah robot ran on a treadmill at 28 MPH, setting a land speed record for legged robots. Then in 2015 MIT unveiled a robotic cheetah that sees and jumps hurdles as it runs, making it the first four-legged robot to run and jump over obstacles autonomously.

Now there’s a new mini robot cheetah being developed courtesy University of Twente researcher Geert Folkertsma. He spent four years researching and developing a scaled-down robotic version of the world’s fastest land animal to hopefully replicate its movements.

Folkertsma says his cheetah robot weighs 5.5 lb and is 11.8 inches long, twenty times lighter and four times smaller than a real cheetah. Proportionally, it uses about fifteen percent more energy than a real cheetah.

Must-Watch: Cassie Bipedal Robot Wants to Deliver Your Packages

All of these cheetah robots have been built with the hope of improving the gait of legged robots, which is typically very inefficient.

“I wanted to create a robot that runs the same way [as a cheetah], with the aim of applying this knowledge to the development of new robots,” Folkertsma explains. “Robots are bound to play an increasingly important part in our daily lives and we therefore have to ensure that they can move effectively in our environment. My robot vacuum cleaner, for example, cannot climb stairs or even cope with thresholds. We therefore need to develop robots that can walk and when it comes to moving around efficiently, there’s a lot we can learn from the cheetah.”

Robotics Trends has reached out to the University of Twente to see if there’s any video of the robot cheetah. We’ll update this post if video becomes available. Folkertsma will defend his PhD thesis entitled “Energy-based and biomimetic robotics” at the university on April 21, 2017.

Folkertsma cheetah robot can currently reach a speed of 0.6 MPH, which Folkertsma says is quite a pace for such a small robot. “More research is needed to enable it to run as fast as a real cheetah, relatively speaking. That would entail getting up to a speed of around twenty kilometres per hour [12.5 MPH]. A Master’s student is currently working on a newly developed robotic leg and the first tests, focusing on a single leg, are already promising. With four legs of this type, the robot will be able to run much faster; I think this will help us make genuine advances.”

Folkertsma studied extensive video footage of cheetahs and used software to analyse their movements. The backbone proves crucial to the power this big cat generates. Bending and extending its spine enables the cheetah to move efficiently, run exceptionally fast and make huge leaps.

“The main difference between existing walking robots and my cheetah robot is therefore the backbone,” Folkertsma says. “The trick was to imitate it without complicating matters unnecessarily: instead of vertebrae and intervertebral discs, we worked with a cleverly placed spring which delivers approximately the same effect. Cheetahs are also able to store a lot of energy in their muscles for later use. This too is something we have imitated by fitting carefully selected springs in our robot’s legs.”

About The Author

Steve Crowe

Steve Crowe is Executive Editor, Robotics, WTWH Media, and chair of the Robotics Summit & Expo and RoboBusiness. He is also co-host of The Robot Report Podcast, the top-rated podcast for the robotics industry. He joined WTWH Media in January 2018 after spending four-plus years as Managing Editor of Robotics Trends Media. He can be reached at scrowe@wtwhmedia.com

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe