The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

How Microsoft’s AI Mastered Ms. Pac-Man

By Steve Crowe | June 14, 2017

A Microsoft AI system has set the all-time high score for the game Ms. Pac-Man with 999,990 points – the highest possible score in the game. The AI mastered Ms. Pac-Man by assigning a number of AI agents different tasks and having them work collaboratively.

Add Ms. Pac-Man to the growing list of games being mastered by artificial intelligence (AI). An AI system from Microsoft set the all-time high score for Ms. Pac-Man with 999,990 points – the highest possible score in the game. The previous high score was 933,580 points set by Abdner Ashman, a human from New York.

Watch the YouTube video atop this page to see a small glimpse into how the AI played Ms. Pac-Man. Microsoft explains how a technique called Hybrid Reward Architecture used 150 agents for a specific task in the game, like finding pellets, or avoiding ghosts. This allowed Microsoft’s AI to play a perfect game.

Must-Read What AI Can and Can’t Do: DARPA’s Realistic View

“Then, the researchers created a top agent – sort of like a senior manager at a company – who took suggestions from all the agents and used them to decide where to move Ms. Pac-Man.

“The top agent took into account how many agents advocated for going in a certain direction, but it also looked at the intensity with which they wanted to make that move. For example, if 100 agents wanted to go right because that was the best path to their pellet, but three wanted to go left because there was a deadly ghost to the right, it would give more weight to the ones who had noticed the ghost and go left.”

Asilomar AI Principles: 23 Tips for Making AI Safe

Microsoft also says “the best results were achieved when each agent acted very egotistically – for example, focused only on the best way to get to its pellet – while the top agent decided how to use the information from each agent to make the best move for everyone.”

The AI played the Atari 2600 version of the game. The AI researchers say they chose Ms. Pac-Man as it was written to be far less predictable than the original version of the game.

The researchers say the AI technique that mastered Ms. Pac-Man could also be used to make advances in natural language processing. Other potential applications include helping a company’s sales organization make precise predictions about which potential customers to target at a particular time or on a particular day.

About The Author

Steve Crowe

Steve Crowe is Executive Editor, Robotics, WTWH Media, and chair of the Robotics Summit & Expo and RoboBusiness. He is also co-host of The Robot Report Podcast, the top-rated podcast for the robotics industry. He joined WTWH Media in January 2018 after spending four-plus years as Managing Editor of Robotics Trends Media. He can be reached at scrowe@wtwhmedia.com

Related Articles Read More >

Parkhotel employees in Eisenstadt, Austria, celebrate the arrival of Pudu service robots.
Pudu Robotics CEO predicts that service robot market will expand
Meet the RBR50 Robotics Innovation Awards Winners
Picking robot shipments graph.
Over 150,000 picking robots to be installed by 2030
How to use simulation for developing robots

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.
The Robot Report Listing Database

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Sager Electronics and its partners, logos shown here, will exhibit at the 2025 Robotics Summit & Expo. Sager Electronics to exhibit at the Robotics Summit & Expo
  • The Shift in Robotics: How Visual Perception is Separating Winners from the Pack
  • An AutoStore automated storage and retrieval grid. Webinar to provide automated storage and retrieval adoption advice
  • Smaller, tougher devices for evolving demands
  • Modular motors and gearboxes make product development simple
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe