The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast

Flexible medical robots get low-cost, highly accurate guidance at UC San Diego

By Ioana Patringenaru | May 19, 2020


Current methods of guiding flexible surgical robots within the human body are often expensive and require exposure to radiation. Engineers at the University of California San Diego said they have developed an easy-to-use system to track the location of flexible medical robots that performs as well as current state-of-the-art methods but is much less costly and does not involve radiation.

The system was developed by Tania Morimoto, a professor of mechanical engineering at the Jacobs School of Engineering at UC San Diego, and mechanical engineering Ph.D. student Connor Watson. Their findings were published in the April 2020 issue of IEEE Robotics and Automation Letters.

Flexible medical robots can minimize impact

“Continuum medical robots work really well in highly constrained environments inside the body,” Morimoto said. “They’re inherently safer and more compliant than rigid tools. But it becomes a lot harder to track their location and their shape inside the body. And so if we are able track them more easily, that would be a great benefit both to patients and surgeons.”

The researchers embedded a magnet in the tip of a flexible medical robot that can be used in delicate places inside the body, such as arterial passages in the brain.

“We worked with a growing robot, which is a robot made of a very thin nylon that we invert, almost like a sock, and pressurize with a fluid, which causes the robot to grow,” Watson said. Because the surgical robot is soft and moves by growing, it has very little impact on its surroundings, making it ideal for use in medical settings.

The 2020 Healthcare Robotics Engineering Forum is coming in September.

Magnetic localization works like GPS

The researchers then used existing magnet localization methods, which work very much like GPS, to develop a computer model that predicts the robot’s location. GPS satellites ping smartphones and based on how long it takes for the signal to arrive, the GPS receiver in the smartphone can determine where the cell phone is.

Similarly, researchers know how strong the magnetic field should be around the magnet embedded in the flexible medical robot. They rely on four sensors that are carefully spaced around the area where the robot operates to measure the magnetic field strength. Based on how strong the field is, they are able to determine where the tip of the robot is.

The whole system, including the robot, magnets, and magnet localization setup, costs only around $100.

Flexible medical robots get low-cost, highly accurate guidance at UC San Diego

Roboticists have used magnet localization to develop a model for locating the tip of a flexible medical robot. Credit: David Baillot, UC San Diego

Neural network improves localization

Morimoto and Watson then trained a neural network to learn the difference between what the sensors were reading and what the model said the sensors should be reading. As a result, they improved localization accuracy to track the tip of the flexible medical robot.

“Ideally, we are hoping that our localization tools can help improve these kinds of growing robot technologies,” said Morimoto. “We want to push this research forward so that we can test our system in a clinical setting and eventually translate it into clinical use.”

About the author

Ioana Patringenaru is associate media relations director at the Jacobs School of Engineering at UC San Diego.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Laser-steering microrobot aims to refine minimally invasive surgery
Orthosensor Mako Surgical robots
Stryker acquires OrthoSensor to enhance Mako surgical robots
Distalmotion Dexter surgical robot receives European CE Mark
Top 10 transactions in robotics in 2020
Top 10 transactions in robotics in 2020

Robotics Year in Review

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

How AMP Robotics is changing recycling; Festo wins GM gripper challenge

The Robot Report Podcast · How AMP Robotics is changing recycling; Festo wins GM gripper challenge

Sponsored Content

  • Doosan Robotics: Driving Innovation and Growth in Cobots
  • FORT Robotics Podcast: FORT Robotics on how to keep humans safe and in control of robots
  • Pallet Detection Systems Help Automated Forklifts Modernize Warehouse Operations
  • IES Servo Control Gripper
  • How to cut the cost of manufacturing

Tweets by RoboticTips

The Robot Report
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search The Robot Report

  • Research
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • Grippers / End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors / Sensing Systems
    • Soft Robotics
    • Software / Simulation
  • Development
    • A.I. / Cognition
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Defense / Security
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
  • Investments
  • Resources
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50
    • Search Robotics Database
    • Videos
    • Webinars
  • Events
    • RoboBusiness Direct
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
  • Podcast