The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe

DeepMind acquires MuJoCo physics engine for robotics R&D

By Steve Crowe | October 18, 2021

Shadow hand MuJoCo

The Shadow hand from Open AI was built in part using the MuJoCo physics engine. | Credit: OpenAI

DeepMind, an AI research lab and subsidiary of Alphabet Inc., acquired the MuJoCo physics engine for robotics research and development. DeepMind is currently working to open-source MuJoCo and make it free for everyone in 2022.

When open-sourcing the system is complete, the GitHub repository will become the new home for MuJoco. Customers with existing paid licenses for MuJoCo can go to roboti.us for continued support.

MuJoCo, which stands for Multi-Joint Dynamics with Contact, is a physics engine that aims to facilitate R&D in robotics, biomechanics, graphics and animation, and other areas where fast and accurate simulation is needed. Initially developed by Roboti LLC, it is a C/C++ library with a C API. The runtime simulation module is tuned to maximize performance and operates on low-level data structures which are preallocated by the built-in XML parser and compiler.

The user defines models in the native MJCF scene description language – an XML file format designed to be as human readable and editable as possible. URDF model files can also be loaded. The library includes interactive visualization with a native GUI, rendered in OpenGL.

MuJoCo can be used to implement model-based computations such as control synthesis, state estimation, system identification, mechanism design, data analysis through inverse dynamics, and parallel sampling for machine learning applications. It can also be used as a more traditional simulator, including for gaming and interactive virtual environments.

One example of robotics research that used MuJoco was the Shadow hand from OpenAI. OpenAI developed a model that enabled a single-handed solution to a Rubik’s cube. OpenAI has since abandoned robotics research altogether, but it captured the community’s attention with this research.

What DeepMind sees in MuJoCo

DeepMind wrote a blog about the acquisition, saying MuJoCo has been the “physics simulator of choice” for its robotics team. According to DeepMind, many simulators used by robotics engineers were initially designed for purposes like gaming and cinema. So they sometimes take shortcuts that prioritise stability over accuracy. DeepMind said that’s not the case with MuJoCo.

“MuJoCo is a second-order continuous-time simulator, implementing the full Equations of Motion,” it wrote. “Familiar yet non-trivial physical phenomena like Newton’s Cradle, as well as unintuitive ones like the Dzhanibekov effect, emerge naturally. Ultimately, MuJoCo closely adheres to the equations that govern our world.”

“[MuJoCo] hits a sweet spot with its contact model, which accurately and efficiently captures the salient features of contacting objects,” DeepMind continued. “Like other rigid-body simulators, it avoids the fine details of deformations at the contact site, and often runs much faster than real time. Unlike other simulators, MuJoCo resolves contact forces using the convex Gauss Principle. Convexity ensures unique solutions and well-defined inverse dynamics. The model is also flexible, providing multiple parameters which can be tuned to approximate a wide range of contact phenomena.”

DeepMind said it has been using MuJoCo as a simulation platform for various projects, mostly via its dm_control Python stack. It highlighted a few robotics examples, which you can watch via the playlist below, noting it’s only a fraction of the possibilities.

About The Author

Steve Crowe

Steve Crowe is Executive Editor, Robotics, WTWH Media, and chair of the Robotics Summit & Expo and RoboBusiness. He is also co-host of The Robot Report Podcast, the top-rated podcast for the robotics industry. He joined WTWH Media in January 2018 after spending four-plus years as Managing Editor of Robotics Trends Media. He can be reached at [email protected]

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

An illustration of two Franka arms picking items in simulation.
PickNik expands support for Franka Research 3 robot on MoveIt Pro
A small drone flying into fog in a dark room.
Bats inspire WPI researchers to develop drones using echolocation
Three drones work together to carry a package using a new algorithm developed at TU Delft.
TU Delft algorithm to enables drones to work together to transport heavy payloads
Mr Tung Meng Fai, Executive Director, National Robotics Programme (NRP); Professor Tan Chorh Chuan, Chairman, Agency for Science, Technology and Research (A*STAR); Ms Vanessa Yamzon Orsi, CEO, Open Source Robotics Foundation; and Dr Wang Wei, Deputy Executive Director (R&D) at A*STAR SIMTech and A*STAR ARTC, attended ROSCon on 28 October 2025.
Singapore’s National Robotics Programme reveals initiatives to advance robot adoption

RBR50 Innovation Awards

“rr
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Robotics Professionals.

Latest Episode of The Robot Report Podcast

Automated Warehouse Research Reports

Sponsored Content

  • Supporting the future of medical robotics with smarter motor solutions
  • YUAN Unveils Next-Gen AI Robotics Powered by NVIDIA for Land, Sea & Air
  • ASMPT chooses Renishaw for high-quality motion control
  • Revolutionizing Manufacturing with Smart Factories
  • How to Set Up a Planetary Gear Motion with SOLIDWORKS
The Robot Report
  • Automated Warehouse
  • RoboBusiness Event
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Humanoids
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Business
    • Financial
      • Investments
      • Mergers & Acquisitions
      • Earnings
    • Markets
      • Agriculture
      • Healthcare
      • Logistics
      • Manufacturing
      • Mining
      • Security
    • RBR50
      • RBR50 Winners 2025
      • RBR50 Winners 2024
      • RBR50 Winners 2023
      • RBR50 Winners 2022
      • RBR50 Winners 2021
  • Resources
    • Automated Warehouse Research Reports
    • Digital Issues
    • eBooks
    • Publications
      • Automated Warehouse
      • Collaborative Robotics Trends
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
  • Advertise
  • Subscribe