The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail

Brigham and Women’s Hospital, MIT use Spot robot to measure patient vitals without contact

By Anne Trafton | MIT News | August 31, 2020


During the current coronavirus pandemic, one of the riskiest parts of a healthcare worker’s job is assessing people who have symptoms of COVID-19. Researchers from Brigham and Women’s Hospital and the Massachusetts Institute of Technology said they hope to reduce that risk by using robots to remotely measure patients’ vital signs.

The Spot quadruped robots, which are controlled by a handheld device, can also carry a tablet that allows doctors to ask patients about their symptoms without being in the same room.

“In robotics, one of our goals is to use automation and robotic technology to remove people from dangerous jobs,” said Henwei Huang, a postdoctoral student at MIT. “We thought it should be possible for us to use a robot to remove the healthcare worker from the risk of directly exposing themselves to the patient.”

Using four cameras mounted on a dog-like robot developed by Boston Dynamics, the researchers have shown that they can measure skin temperature, breathing rate, pulse rate, and blood oxygen saturation in healthy patients, from a distance of 2 meters. They are now making plans to test it in patients with COVID-19 symptoms.

“We are thrilled to have forged this industry-academia partnership in which scientists with engineering and robotics expertise worked with clinical teams at the hospital to bring sophisticated technologies to the bedside,” said Giovanni Traverso, an MIT assistant professor of mechanical engineering who is also a gastroenterologist at Brigham and Women’s Hospital and the senior author of the study.

The researchers have posted a paper on their system on the preprint server techRxiv, and have submitted it to a peer-reviewed journal. Huang is one of the lead authors of the study, along with Peter Chai, an assistant professor of emergency medicine at Brigham and Women’s Hospital, and Claas Ehmke, a visiting scholar from ETH Zurich.

Brigham and Women’s focuses on vitals

When COVID-19 cases began surging in Boston in March, many hospitals, including Brigham and Women’s, set up triage tents outside their emergency departments to evaluate people with novel coronavirus symptoms. One major component of this initial evaluation is measuring vital signs, including body temperature.

The MIT and Brigham and Women’s researchers came up with the idea to use robots to enable contactless monitoring of vital signs, to allow health care workers to minimize their exposure to potentially infectious patients. They decided to use existing computer vision technologies that can measure temperature, breathing rate, pulse, and blood oxygen saturation, and worked to make them mobile.

To achieve that, they used Spot. Health care workers can use a handheld controller to maneuver the robot to wherever patients are sitting. The researchers mounted four different cameras onto the robot — an infrared camera plus three monochrome cameras that filter different wavelengths of light.

Related content: “We tele-operated Spot around Golden Gate Park — from 3,000 miles away“; The Robot Report Podcast: More on tele-operating Spot

The researchers developed algorithms that allow them to use the infrared camera to measure both elevated skin temperature and breathing rate. For body temperature, the camera measures skin temperature on the face, and the algorithm correlates that temperature with core body temperature. The algorithm also takes into account the ambient temperature and the distance between the camera and the patient, so that measurements can be taken from different distances, under different weather conditions, and still be accurate.

Measurements from the infrared camera can also be used to calculate the patient’s breathing rate. As the patient breathes in and out, wearing a mask, their breath changes the temperature of the mask. Measuring this temperature change allows the researchers to calculate how rapidly the patient is breathing.

The three monochrome cameras each filter a different wavelength of light — 670, 810, and 880 nanometers. These wavelengths allow the researchers to measure the slight color changes that result when hemoglobin in blood cells binds to oxygen and flows through blood vessels. The researchers’ algorithm uses these measurements to calculate both pulse rate and blood oxygen saturation.

“We didn’t really develop new technology to do the measurements,” Huang said. “What we did is integrate them together very specifically for the COVID application, to analyze different vital signs at the same time.”

Brigham and Women’s Hospital

Researchers from MIT and Brigham and Women’s Hospital hope to reduce the risk to healthcare workers by using robots such as Spot to remotely measure patients’ vital signs. Source: Image courtesy of the researchers, MIT News

Robots enable continuous monitoring

In this study, the researchers performed the measurements on healthy volunteers. They are now making plans to test their robotic approach in people who are showing symptoms of COVID-19 in a hospital emergency department.

In the meantime, the researchers plan to focus on triage applications. In the longer term, they said they envision that the robots could be deployed in patients’ hospital rooms. This would allow the robots to continuously monitor patients and also allow doctors to check on them, via tablet, without having to enter the room. Both applications would require approval from the U.S. Food and Drug Administration.

The Brigham and Women’s research was funded by the MIT Department of Mechanical Engineering and the Karl van Tassel (1925) Career Development Professorship. The research described here has not yet been peer-reviewed by scientific or medical experts.

Tell Us What You Think! Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Articles Read More >

Intuitive collaborating with Creo Medical to enhance surgical robots
Xact Robotics ACE system
FDA clearance expands indications for Xact Robotics’ ablation system
Savioke is now Relay Robotics
healthcare robotics
Festo, MassRobotics to celebrate healthcare robotics innovation

2021 Robotics Handbook

The Robot Report Listing Database

Latest Robotics News

Robot Report Podcast

Robotics Summit 2022 recap
See More >

Sponsored Content

  • Meet Trey, the autonomous trailer (un)loading forklift
  • Kinova Robotics launches Link 6, the first Canadian industrial collaborative robot
  • Torque sensors help make human/robot collaborations safer for workers
  • Roller screws unlock peak performance in robotic applications
  • Making the ROS development cycle manageable

RBR50 Innovation Awards

Leave us a voicemail

The Robot Report
  • Mobile Robot Guide
  • Collaborative Robotics Trends
  • Field Robotics Forum
  • Healthcare Robotics Engineering Forum
  • RoboBusiness Event
  • Robotics Business Review
  • Robotics Summit & Expo
  • About The Robot Report
  • Subscribe
  • Advertising
  • Contact Us

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search The Robot Report

  • Home
  • News
  • Technologies
    • Batteries / Power Supplies
    • Cameras / Imaging / Vision
    • Controllers
    • End Effectors
    • Microprocessors / SoCs
    • Motion Control
    • Sensors
    • Soft Robotics
    • Software / Simulation
  • Development
    • Artificial Intelligence
    • Human Robot Interaction / Haptics
    • Mobility / Navigation
    • Research
  • Robots
    • AGVs
    • AMRs
    • Consumer
    • Collaborative Robots
    • Drones
    • Exoskeletons
    • Industrial
    • Self-Driving Vehicles
    • Unmanned Maritime Systems
  • Markets
    • Agriculture
    • Healthcare
    • Logistics
    • Manufacturing
    • Mining
    • Security
  • Financial
    • Investments
    • Mergers & Acquisitions
    • Earnings
  • Resources
    • Careers
    • COVID-19
    • Digital Issues
    • Publications
      • Collaborative Robotics Trends
      • Robotics Business Review
    • RBR50 Winners 2022
    • Search Robotics Database
    • Videos
    • Webinars / Digital Events
  • Events
    • RoboBusiness
    • Robotics Summit & Expo
    • Healthcare Robotics Engineering Forum
    • DeviceTalks
    • R&D 100
    • Robotics Weeks
  • Podcast
    • Episodes
    • Leave a voicemail